
and subsequent addition through line combinations can form all possible 1 －vectors in space \mathfrak{G} Hereby we judge that the Cartesian vector algebra is of primary quality of first grade（pqg－1） The Cartesian coordinate system historically had significant importance for the concept of space （5．（especially up to three dimensions）for an understanding the location of physical objects in space \mathfrak{G} ，but it has been problematic for the understanding of the form of physical objects，as the idea of the perpendicular（orthogonal）axes has camouflaged the plane rotation as a property of entities in space．The 4 －symmetry between the two perpendicular axes with four quadrants is shown in Figure 5.36 in four even angles leaves one to believe that an alternation of the two axes is indifferent to Leibniz rational relation of spatial forms．This was first contradicted by Kant 1768 ［11］p．361－372
One could believe that line segment AB is the same as line segment BA in Figure 5.35 When we see a third point $0 \notin \ell_{\mathrm{AB}}$ outside the line，the line suddenly gets a front－and back－side， namely the front and back of the plane idea for us formed by the three points γ_{OAB} ．
In short above（5．73），we have formulated this with the anti－commuting law
$\boldsymbol{i}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}=-\boldsymbol{\sigma}_{1} \boldsymbol{\sigma}_{2}$
This means that a permutation of the coordinate axes will change the sign of a plane segment Hence a plane segment has two states，as indicated by（5．75）the bivector $\widehat{\mathrm{B}}= \pm 1 \boldsymbol{i}$ or $\mathrm{B}= \pm \beta \boldsymbol{i}$ ． Saying in an everyday way the reason is：A piece of paper has both a front and a back，
and a clock turns counterclockwise when viewed from the backside（imagine the dial is transparent）． A rotation direction has two orientations OAB or OBA．On top of this we have the problem： What is clockwise or counterclockwise rotation depending on the point of view．
5．3．3．2 The Cartesian Coordinate System and the Plane Pseudoscalar Concept
We look at points in the Cartesian coordinate system described in formula（5．135）－（5．139）
（5．141）$\quad \mathrm{Z} \leftrightarrow \mathrm{X} \leftrightarrow \mathbf{r}=\mathrm{r}=\overrightarrow{\mathrm{OX}}=\overrightarrow{\mathrm{OX}}_{1}+\overrightarrow{\mathrm{OX}}_{2}=x_{1} \boldsymbol{\sigma}_{1}+x_{2} \boldsymbol{i} \boldsymbol{\sigma}_{1}=(\rho \cos \theta) \boldsymbol{\sigma}_{1}+(\rho \sin \theta) \boldsymbol{\sigma}_{2}=\rho e^{\boldsymbol{i} \theta} \boldsymbol{\sigma}_{1}$ ． Multiplying from the right with $\boldsymbol{\sigma}_{1}$ ，we get the 2 －multi－vector concept
（5．142）$\quad \mathrm{Z} \leftrightarrow \mathcal{Z}=\rho U_{\theta}=\rho e^{\boldsymbol{i} \theta}=\mathbf{r} \boldsymbol{\sigma}_{1}=\mathbf{r} \cdot \boldsymbol{\sigma}_{1}+\mathbf{r} \wedge \boldsymbol{\sigma}_{1}=\rho \cos \theta+\rho \boldsymbol{i} \sin \theta=x_{1}+x_{2} \boldsymbol{i}$
In the last three formulations in（5．142），the first part in sum is a real scalar x_{1} ，and the second part is a unit bivector \boldsymbol{i} times a real scalar x_{2} or what is called a pqg－2 pseudo－scalar for the plane， pseudonym with a plane bivector $\mathrm{B}=x_{2} \boldsymbol{i}$ ．The reader can compare it with § 5．1．1．10． Instead of considering the plane as given Cartesian coordinates（ x_{1}, x_{2} ）we by（5．142）try to intuit the plane as given by two primary quantities
－pqg－0 a real scalar $\left(x_{1}\right)$ ，
－pqg－2 a bivector（ $x_{2} \boldsymbol{i}$ ）（as an orientation－dependent pseudoscalar in the same plane）．
These can be added in geometric algebra，although they have two different qualities in the substance of space \mathfrak{G} ．This concept depends fully on an object $\boldsymbol{i}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ for intuition． Anyway，we have a linear algebraic space，which I try to describe
$\left(\mathbb{R}_{1}^{1} \otimes \mathbb{R}_{1}^{1}, \mathbb{R}\right) \sim\left(\mathbb{R}^{2}, \mathbb{R}\right) \sim\left(\mathbb{R}_{\text {pqg－0 }} \otimes \mathbb{R}_{\text {pqg－2 }}^{\boldsymbol{i}}, \mathbb{R}\right) \sim\left(\mathbb{R}_{1}^{1} \oplus \mathbb{R}_{i}^{1}, \mathbb{R}\right) \sim\left(\mathbb{R}_{1}^{1} \oplus \mathbb{R}_{1}^{1}, \mathbb{R}\right) \sim\left(\mathbb{R}_{1}^{2}, \mathbb{R}\right)$ It is left here for the reader to consider the enlightenment connection with the coordinates $\left.\mathrm{Z} \leftrightarrow \mathbf{r} \boldsymbol{\sigma}_{1} \leftrightarrow(\rho, \theta) \leftrightarrow(\rho, \boldsymbol{i} \theta) \quad \stackrel{(}{4}, x_{2} \boldsymbol{i}\right) \leftrightarrow\left(x_{1}, x_{2}\right) \leftrightarrow \mathrm{X}$.
5．3．3．3．The Parity Inversion of the 2－dimensional Descartes Extension Coordinate
A parity inversion by first grade pqg－1－vectors，with impact on higher grade elements， is that Hestenes call space conjugation in［6］p．17．We define it by orientation inverting of all 1 －vector directions units of Descartes extension inside the physical space \mathfrak{G} ．In the Cartesian plane，any 1 －vector is generated from the two base－1－vectors according to the formula（5．136）

${ }^{245}$ Once again it is important here to note the notation with the $\boldsymbol{i i}(0)$ ，as the parity－inversion－operation works on all line

 1－vector ingredients in the 2－multi－vector，thus $i \boldsymbol{i}(\boldsymbol{i})=\boldsymbol{i} i\left(\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}\right)=\boldsymbol{i} i\left(\boldsymbol{\sigma}_{2}\right) i \boldsymbol{i}\left(\boldsymbol{\sigma}_{1}\right)=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}=\boldsymbol{i}$ has no effect，while when we \boldsymbol{i}^{3} ． $\boldsymbol{i}^{3} \boldsymbol{\sigma}_{1}=(i \boldsymbol{i}) \boldsymbol{i} \boldsymbol{\sigma}_{1}=\boldsymbol{i} \boldsymbol{i}\left(\boldsymbol{\sigma}_{2}\right)=-\boldsymbol{\sigma}_{2}$ ．（C）Jens Erfurt Andresen，M．Sc．NBI－UCPH，
For quotation reference use：ISBN－13：978－8797246931

