5.3. The Rotor Concept as the Primary Quality of Even Grades (pqg-0-2),

We have now seen that we intuit the plane concept from a rotation. By a rotor and a dilation.
Previously page $154, \S 5.1 .1 .2, \mathrm{k}$ has alleged that the plane uniquely is defined by three points A , B, C which are not located on one straight line. The three points can as alleged in (n) and (o) shown in Figure 5.1 be circumscribed by a circle that has implicitly a center we call O. This circle can then be selected as a unit circle O for the plane, which forms the basis of the unitary rotor U. The rotation around the circle direction is defined as positively orientated along the arc from A to B , that is, positively ${ }^{236}$ around the triangle $\triangle \mathrm{OAB}$, or positively orientated around the triangle $\triangle C A B \sim \triangle B C A \sim \triangle A B C$, circumscribed by the circle $O A B C$ through the three points A, B, C.
We make the circumscribed circle $O A B C$ to determine a locus situs, a place in a plane world. I introduce an icon Θ as the symbol for this centred local interaction, in a circular defined plane $\gamma_{A B C}$. The three points A,B,C thus implies three unitary 1-vectors objects $\mathbf{u}_{a}=\overrightarrow{O A}, \mathbf{u}_{b}=\overrightarrow{O B}$ and $\mathbf{u}_{\mathrm{c}}=\overrightarrow{\mathrm{OC}}$, of form unit radius $\forall \mathbf{u},|\mathbf{u}|=1$ for the circumscribed unit circle wheel spanning the circle plane from the center O of the circle $\triangle A B C$, as shown in Figure 5.31.
The 1-rotor U from the arc $\overline{\mathrm{AB}}$ is defined as the product of the two 1 -vectors $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$,
(5.110) $\quad U_{\widetilde{\mathrm{AB}}}=(\overrightarrow{\mathrm{OB}})(\overrightarrow{\mathrm{OA}})=\mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathrm{a}}=e^{\boldsymbol{i} \theta}=U_{\theta}, \quad$ where $\theta=\Varangle \mathrm{AOB}=\operatorname{arc}(\overline{\mathrm{AB}})$, and further through the two other rotation angles of the 1-rotors

$$
\text { (5.111) } \quad U_{\widetilde{\mathrm{BC}}}=(\overrightarrow{\mathrm{OC}})(\overrightarrow{\mathrm{OB}})=\mathbf{u}_{\mathbf{c}} \mathbf{u}_{\mathbf{b}}=e^{i \varphi}=U_{\varphi}
$$

(5.112) $U_{\widetilde{\mathrm{CA}}}=(\overrightarrow{\mathrm{OA}})(\overrightarrow{\mathrm{OC}})=\mathbf{u}_{\mathrm{a}} \mathbf{u}_{\mathrm{c}}=e^{i \phi}=U_{\phi}$

We have $\phi+\varphi+\theta=2 \pi$, once around one circle, hence

$$
\text { (5.113) } \quad U_{\phi} U_{\varphi} U_{\theta}=e^{i \phi} e^{i \varphi} e^{i \theta}=e^{i(\phi+\varphi+\theta)}=U_{\phi+\varphi+\theta}=(i i i i i)=i^{4}=1
$$

The product of the three 1 -rotor operators is the same as the product of the three 2 -multi-vectors (six $2 \cdot 31$-vectors)
(5.114) $\quad\left(\mathbf{u}_{\mathrm{a}} \mathbf{u}_{\mathbf{c}}\right)\left(\mathbf{u}_{\mathbf{c}} \mathbf{u}_{\mathbf{b}}\right)\left(\mathbf{u}_{\mathrm{b}} \mathbf{u}_{\mathrm{a}}\right)=\mathbf{u}_{\mathrm{a}} \mathbf{u}_{\mathbf{c}} \mathbf{u}_{\mathbf{c}} \mathbf{u}_{\mathrm{b}} \mathbf{u}_{\mathrm{b}} \mathbf{u}_{\mathrm{a}}=1$

We simply use the product of the unitary multi-vectors, each consisting of two 1 -vectors representing the rotors which are great advantage, rather than splitting into scalars and bivector
$\mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathrm{a}}=\mathbf{u}_{\mathbf{b}} \cdot \mathbf{u}_{\mathrm{a}}+\mathbf{u}_{\mathrm{b}} \wedge \mathbf{u}_{\mathrm{a}}$
(5.115) $\quad \mathbf{u}_{\mathbf{c}} \mathbf{u}_{\mathbf{b}}=\mathbf{u}_{c} \cdot \mathbf{u}_{\mathbf{b}}+\mathbf{u}_{\mathbf{c}} \wedge \mathbf{u}_{\mathbf{b}}$
$\mathbf{u}_{\mathrm{a}} \mathbf{u}_{\mathbf{c}}=\mathbf{u}_{\mathrm{a}} \cdot \mathbf{u}_{\mathrm{c}}+\mathbf{u}_{\mathrm{a}} \wedge \mathbf{u}_{\mathrm{c}}$
If we look at three sectors central symmetrical circle, we have
$\mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathrm{a}}=\mathbf{u}_{\mathrm{b}} \cdot \mathbf{u}_{\mathrm{a}}+\mathbf{u}_{\mathbf{b}} \wedge \mathbf{u}_{\mathrm{a}}=-\frac{1}{2}+\mathbf{u}_{\mathrm{b}} \wedge \mathbf{u}_{\mathrm{a}}$
(5.116) $\quad \mathbf{u}_{\mathbf{c}} \mathbf{u}_{\mathbf{b}}=\mathbf{u}_{\mathbf{c}} \cdot \mathbf{u}_{\mathbf{b}}+\mathbf{u}_{\mathbf{c}} \wedge \mathbf{u}_{\mathbf{b}}=-\frac{1}{2}+\mathbf{u}_{\mathbf{c}} \wedge \mathbf{u}_{\mathbf{b}}$
$\mathbf{u}_{\mathrm{a}} \mathbf{u}_{\mathrm{c}}=\mathbf{u}_{\mathrm{a}} \cdot \mathbf{u}_{\mathrm{c}}+\mathbf{u}_{\mathrm{a}} \wedge \mathbf{u}_{\mathrm{c}}=-\frac{1}{2}+\mathbf{u}_{\mathrm{a}} \wedge \mathbf{u}_{\mathrm{c}}$
In this symmetrical circle plane $\mathbf{u}_{\mathrm{a}}+\mathbf{u}_{\mathrm{b}}+\mathbf{u}_{\mathbf{c}}=\mathbf{0}$, the sum of these three 1 -vectors does not contribute to a translation. But the three identical 1-rotors
$U_{\frac{2 \pi}{3}}=\mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathrm{a}}=\mathbf{u}_{\mathbf{c}} \mathbf{u}_{\mathbf{b}}=\mathbf{u}_{\mathrm{a}} \mathbf{u}_{\mathbf{c}}$
causing a combined full turn of the circle and thereby
(5.118)

$$
\left(U_{\frac{2 \pi}{3}}\right)^{3}=U_{2 \pi}=U_{0} \sim 1, \quad \text { see Figure } 5.33
$$

as modulo of the three central symmetrical rotations.

Figure 5.31 The three points of the circle

Figure 5.32 The three bivectors

Figure 5.33 The three-sector central symmetrical circle combined of three equal rotations by the rotor $U_{\frac{2 \pi}{3}}$.

[^0]© Jens Erfurt Andresen, M.Sc. NBI-UCPH,
For quotation reference use: ISBN-13: 978-8797246931

[^0]: ${ }^{236}$ If the triangle ABC is not orientated counterclockwise simply change the view to the opposite side of the plane γ_{ABC} (paper).

