

5．2．8．2．The Product of Rotor

The product of 1－rotors is equivalent to the addition of the angles in the same plane

Figure 5．25 Plane product of two 1－rotors Additio Addition of the arc quanitities of the angle \rightarrow in the same plane．

5．2．8．3．The Rotor Product With a 1 －vecto
Multiplying a 1 －vector with a rotor from the left or right side switches the 1－vector direction in the rotor plane，as illustrated in Figure 5．26，
（5．95）$\quad U_{\theta} \mathbf{a}=e^{i \theta} \mathbf{a}=\mathbf{b} \quad=\mathbf{a} e^{-\boldsymbol{i} \theta}=\mathbf{a} U_{\theta}^{\dagger}=\mathbf{b}$
or $\mathbf{a} U_{\theta}=\mathbf{a} e^{\boldsymbol{i} \theta}=\mathbf{c}=U_{\theta}^{\dagger} \mathbf{a}=e^{-\boldsymbol{i} \theta} \mathbf{a}$

Figure 5．26 The rotor operator acts on a 1－vector from left or from right：$U_{\theta} \mathbf{a}=\mathbf{b} \quad \leftrightarrow \mathbf{a} U_{\theta}=\mathbf{c}=U_{\theta}^{\dagger} \mathbf{a}=\mathbf{c}$ ．

5．2．8．4．A Bivector is Self－identic by a Rotation in its own Plan

It is important to note that the rotation of a rotor in its plane is auto－identical $U_{\theta} U_{\varphi}=U_{\varphi}$
I have used the box \square as a symbol of the operation in the same plane instead of brackets as we use for multiplication in that same plane（5．94）$U_{\theta}\left(U_{\varphi}\right)=U_{\theta+\varphi}$ ． Further is noted that the rotation of a bivector $\mathbf{b} \wedge \mathbf{a}$ through its plane $\gamma_{\mathbf{a}, \mathbf{b}}$ with any arbitrary rotor do not impact a bivector or either a scalar product $U \mathbf{b} \wedge \mathbf{a}=(U \mathbf{b}) \wedge(U \mathbf{a})=\mathbf{b}, \wedge \mathbf{a},=\mathbf{b} \wedge \mathbf{a}$ or $U \mathbf{b} \cdot \mathbf{a}=(U \mathbf{b}) \cdot(U \mathbf{a})=\mathbf{b}, \cdot \mathbf{a},=\mathbf{b} \cdot \mathbf{a}$ The same applies to 2 multi－vectors $U \mathbf{b a}=(U \mathbf{b})(U \mathbf{a})=\mathbf{b}, \mathbf{a},=\mathbf{b a}$ ，in gure 5.27 that $\mathbf{b a}=\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \wedge \mathbf{a} .{ }^{232}$ The rationale here is the geometric congruence \quad Rotation invariance between 1 －vectors and their mutual angles；algebraic reasoning will follow later below．
It is noted that the same of course applies to rotor translations as in § 5．2．7．4
This invariance of the rotor implies that the intuition of a center object for a rotation is irrelevant to the rotating substance of the concept of a plane direction．
This is characteristic of the categorical idea of a primary quality of second grade（pqg－2）．
5．2．8．5．The Simple 1－rotor Algebra
The formulas（5．94）and（5．95）represent the multiplication algebra for the simple rotors
The rotor is just the operator，which defines a plane and therefore a geometric multiplication algebra for planes．In one plane given by the direction idea $\boldsymbol{i}:=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ ，we have the rotor idea（5．83）
（5．96）$\quad U_{\theta}:=e^{+\boldsymbol{i} \theta}$
It is purely given by one angular parameter argument θ in the one and lonely plane direction \boldsymbol{i} ， therefor we call this simple rotor for a 1－rotor．We recall from（5．85）and（5．87）that a rotor always has a unit magnitude modulus amplitude $\left|U_{\theta}\right|=\sqrt{\left\langle U_{\theta}^{\dagger} U_{\theta}\right\rangle_{0}}=1$ ．

[^0]For quotation reference use：ISBN－13：978－8797246931

5．2．9．A Complex Quantity in Space Called a Plane Spinor

5．2．9．1．The Complex Quantity as a Geometric Product of Two 1－vectors

The idea of the 1－rotor as a complex exponential function $U_{\theta}=e^{\boldsymbol{i} \theta}$ representing a rotation direction along with the unit circle $\overrightarrow{\operatorname{arc}}$ ，may by dilation with a real scalar ρ and an appropriate choice of θ be constructed to represent any complex multivector quantity
（5．97）$Z=\rho e^{+\boldsymbol{i} \theta}=\rho U_{\theta}=\mathbf{b a}$
It is funny that \mathbf{a} and \mathbf{b} can be arbitrary ${ }^{233}$ as long as $|\mathbf{b a}|=\rho$ and $\theta=\Varangle(\mathbf{a}, \mathbf{b})$ ． The complex conjugate is equivalent
to a reverse rotation

$$
z^{\dagger}=\rho e^{-\boldsymbol{i} \theta}=\rho U_{\theta}^{\dagger}=\mathbf{a b}
$$

These complex quantities are equivalent to the（ $\overrightarrow{\operatorname{arc}}$ ）of direction magnified by dilation The product of these two gives

Figure 5．28 Two mutually reverse complex quantities． нe product or these two gives

$$
Z Z^{\dagger}=(\mathbf{b a})(\mathbf{a b})=\mathbf{a}^{2} \mathbf{b}^{2}=|Z|^{2}=\rho U_{\theta} \rho U_{\theta}^{\dagger}=\rho^{2} \in \mathbb{R}_{+\mathrm{pqg}-0}
$$

The real scalar $\rho=|Z|=|\mathbf{a}||\mathbf{b}| \in \mathbb{R}_{+}$is called the modulus amplitude of the complex quantity Z
This amplitude ${ }^{234}$ is completely independent of the 1－rotor $U=e^{i \theta}$ and thus the angle θ of rotation in the unit circle．The unitary rotor U havs modulus $|U|=1$ ，since
$U_{\theta} U_{\theta}^{\dagger}=e^{i \theta} e^{-i \theta}=e^{i 0}=1$ ，see（5．85）．
Compare to the unit bivector \boldsymbol{i} of the plane direction whose amplitude is $|\boldsymbol{i}|=1$ ，as
（5．100）$\quad \boldsymbol{i l}^{\dagger}=\boldsymbol{i}(-\boldsymbol{i})=1$ ．
With the intuitive explanation $\boldsymbol{i} \boldsymbol{i}^{\dagger}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1} \boldsymbol{\sigma}_{1} \boldsymbol{\sigma}_{2}=1$ from a basis set $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$ ．
Remember here that the operator \boldsymbol{i} must be used four times to get the modulo unit
（5．101）$\quad(\boldsymbol{i} i \boldsymbol{i} i \boldsymbol{i})=\boldsymbol{i}^{4}=1$
This entails that n multiple operations（iiiii$)^{n}$ represent the modulo of n cyclic turns in the \boldsymbol{i} plane of the complex quantity a 2－multi－vector，that as an intuit object can be a geometrical product of two 1－vectors，here represented as \mathbf{b} and \mathbf{a}
（5．102）$Z=\rho e^{+\boldsymbol{i}(\theta+2 \pi n)}=\rho(\boldsymbol{i} i \boldsymbol{i} i \boldsymbol{i})^{n} e^{\boldsymbol{i} \theta}=\rho \boldsymbol{i}^{4 n} e^{\boldsymbol{i} \theta}=(\boldsymbol{i} i \boldsymbol{i} i \boldsymbol{i})^{n} \mathbf{b a}=\mathbf{b a}, \quad$ for $n \in \mathbb{Z}$
This（ $\overrightarrow{\operatorname{arc}}$ ）is multiple additive arguments with modulo a full circle O circumference with the real scalar quantity 2π ，whereby all the $\theta+2 \pi n$ is the angular argument for the same rotor
（5．103）$\hat{z}=U_{\theta}=e^{+i \theta}=\widehat{\mathbf{b a}}$, where $\quad|\hat{z}|=|\widehat{\mathbf{b a}}|=|\hat{\mathbf{b}}||\hat{\mathrm{a}}|=1, \quad$ especially $\mathbf{u}_{2}=\widehat{\mathbf{b}}$ and $\mathbf{u}_{1}=\hat{\mathbf{a}}$
The complex quantity Z is composed of two quantities
－the quantity $\left[\mathbb{R}_{+\mathrm{pqg}-0}\right]$ of the real scalar modulus amplitude，$|Z|=\rho \in \mathbb{R}_{+}$，making the dilation，and
－the quantity $\left[\mathbb{R}_{i, \mathrm{pqg}-2}^{1}\right]$ one unitary rotor $U_{\theta}=e^{\boldsymbol{i} \theta}=\mathbf{u}_{2} \mathbf{u}_{1}$（5．83）as a geometric unitary product between two 1 －vectors with one mutual angle $\theta=\Varangle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ ， parameterised by one periodic real scalar $\theta \in \mathbb{R}$ modulo 2π ．

This combined product quantity ρU_{θ} is called a 1－spinor for the plane（one angular parameter）． The 1 －spinor is a primary quality of zero and second grade（pqg－0－2），i．e．，even grades．
${ }^{233}$ The 1 －vector concept is hidden as subject to intuition in this complex construction of a pqg－0，2 rotor．
${ }^{234}$ Some omit amplitude for modulus，but in spoken language，it can then be confused with modulo see below for the return（5．101） by the argument $\theta+2 \pi n$ in（5．102）．In this way，I prefer amplitude，as it is often used for signals，etc．
© Jens Erfurt Andresen，M．Sc．NBI－UCPH，$-175-\quad$ Volume I，－Edition 2－2020－22，－Revision 6，

[^0]: This operator impact can also be noted by the dot notation $U \mathbf{b a}=(U \mathbf{b})(U \mathbf{a})$ on both operators；with other operands than the first．
 C Jens Erfiurt Andresen，M．Sc．Physics，Denmark

