December 2022

- 174 -

For quotation reference use: ISBN-13: 978-8797246931

Research on the a priori of Physics

5.2.9. A Complex *Quantity* in Space Called a Plane Spinor 5.2.9.1. The Complex *Quantity* as a Geometric Product of Two 1-vectors The idea of the 1-rotor as a complex exponential function $U_{\theta} = e^{i\theta}$ representing a rotation *direction* along with the unit circle \overrightarrow{arc} , may by *dilation* with a real scalar ρ and an appropriate choice of θ be constructed to represent any complex multivector *quantity* $\mathcal{Z} = \rho e^{+i\theta} = \rho U_{\theta} = \mathbf{b}\mathbf{a}$ (5.97)It is funny that **a** and **b** can be arbitrary²³³ as long as $|\mathbf{b}\mathbf{a}| = \rho$ and $\theta = \measuredangle(\mathbf{a}, \mathbf{b})$. The complex conjugate is equivalent to a reverse rotation $\mathcal{Z}^{\dagger} = \rho e^{-i\theta} = \rho U_{\rho}^{\dagger} = \mathbf{ab}$ (5.98)These complex *quantities* are equivalent to \overline{O} the (arc) of *direction* magnified by *dilation*. The product of these two gives $ZZ^{\dagger} = (\mathbf{b}\mathbf{a})(\mathbf{a}\mathbf{b}) = \mathbf{a}^{2}\mathbf{b}^{2} = |Z|^{2} = \rho U_{\theta}\rho U_{\theta}^{\dagger} =$ (5.99)The real scalar $\rho = |\mathcal{Z}| = |\mathbf{a}| |\mathbf{b}| \in \mathbb{R}_+$ is called the *modulus amplitude* of the complex *quantity* \mathcal{Z} . This amplitude²³⁴ is completely independent of the 1-rotor $U = e^{i\theta}$ and thus the angle θ of rotation in the unit circle. The unitary rotor U have modulus |U|=1, since $U_{\theta}U_{\theta}^{\dagger} = e^{i\theta}e^{-i\theta} = e^{i0} = 1$, see (5.85). Compare to the unit bivector \mathbf{i} of the plane *direction* whose amplitude is $|\mathbf{i}|=1$, as $ii^{\dagger} = i(-i) = 1$. (5.100)With the intuitive explanation $ii^{\dagger} = \sigma_2 \sigma_1 \sigma_1 \sigma_2 = 1$ from a basis set $\{\sigma_1, \sigma_2\}$. Remember here that the operator *i* must be used four times to get the modulo unit $(iiii) = i^4 = 1$. (5.101)This entails that n multiple operations $(iiii)^n$ represent the modulo of n cyclic turns in the **i** plane of the complex quantity a 2-multi-vector, that as an intuit object can be a geometrical product of two 1-vectors, here represented as **b** and **a**. $\mathcal{Z} = \rho e^{+i(\theta + 2\pi n)} = \rho(iiii)^n e^{i\theta} = \rho i^{4n} e^{i\theta} = (iiii)^n \mathbf{ba} = \mathbf{ba}, \text{ for } n \in \mathbb{Z}$ (5.102)This (arc) is multiple additive arguments with modulo a full circle O circumference with the real scalar *quantity* 2π , whereby all the $\theta + 2\pi n$ is the angular argument for the same rotor $\hat{\mathcal{Z}} = U_{\theta} = e^{+i\theta} = \widehat{\mathbf{b}a}$, where $|\hat{\mathcal{Z}}| = |\widehat{\mathbf{b}a}| = |\hat{\mathbf{b}}| |\hat{\mathbf{a}}| = 1$, especially $\mathbf{u}_2 = \hat{\mathbf{b}}$ and $\mathbf{u}_1 = \hat{\mathbf{a}}$ (5.103)The complex quantity Z is composed of two quantities • the quantity $[\mathbb{R}_{+pqg=0}]$ of the real scalar modulus amplitude, $|\mathcal{Z}| = \rho \in \mathbb{R}_+$, making the dilation, and • the quantity $[\mathbb{R}^1_{i,pqg-2}]$ one unitary rotor $U_{\theta} = e^{i\theta} = \mathbf{u}_2 \mathbf{u}_1$ (5.83) as a geometric unitary product between two 1-vectors with one mutual angle $\theta = \measuredangle(\mathbf{u}_1, \mathbf{u}_2)$, parameterised by one periodic real scalar $\theta \in \mathbb{R}$ modulo 2π . This combined product *quantity* ρU_{θ} is called a 1-*spinor* for the plane (one angular parameter). The 1-spinor is a *primary quality of zero and second grade (pqg-0-2)*, i.e., even *grades*. ³³ The 1-vector concept is hidden as subject to intuition in this complex construction of a pqg-0,2 rotor. ²³⁴ Some omit amplitude for modulus, but in spoken language, it can then be confused with modulo see below for the return (5.101) by the argument $\theta + 2\pi n$ in (5.102). In this way, I prefer amplitude, as it is often used for signals, etc. © Jens Erfurt Andresen, M.Sc. NBI-UCPH, -175

C Jens Erfurt Andresen, M.Sc. Physics, Denmark

- 5.2.9. A Complex Quantity in Space Called a Plane Spinor - 5.2.9.1 The Complex Quantity as a Geometric Product of

Figure 5.28 Two mutually reverse complex quantities. (a and b not shown).

$$\rho^2 \in \mathbb{R}_{+pqg-0}$$

Volume I. - Edition 2 - 2020-22, - Revision 6