

The bivector $\mathrm{B}=\mathbf{u}_{2} \wedge \mathbf{u}_{1}=\boldsymbol{i} \sin \theta$ constitute the area-segment, generated by the angle $\angle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$
in that plane direction given by the unit area-segment $\boldsymbol{i}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ multiplied by the relative height of the arc: $\sin \theta$ by the angle rises \perp rejection from the primary baseline 1-vector \mathbf{u}_{1}. The scalar $\mathbf{u}_{2} \cdot \mathbf{u}_{1}=\cos \theta \in \mathbb{R}$ represents the relative co-linear magnitude part that is generated by the angle $\angle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ along one of the 1 -vectors \mathbf{u}_{1} or \mathbf{u}_{2}. (See also Figure 5.9)
These two components; the area segment plus the scalar part complement each other in the rotor (5.83), where the angle quality $\overrightarrow{\operatorname{arc}}_{\theta} \sim \angle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ through the real quantity $\theta=\Varangle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \in \overrightarrow{\mathbb{R}}$ is included as a real argument in the rotor
(5.86) $\quad \overrightarrow{\operatorname{arc}}_{\theta} \rightarrow U_{\theta}=e^{\boldsymbol{i} \theta}=\cos \theta+\boldsymbol{i} \sin \theta=\mathbf{u}_{2} \mathbf{u}_{1}=\mathbf{u}_{2} \cdot \mathbf{u}_{1}+\mathbf{u}_{2} \wedge \mathbf{u}_{1}=\mathbf{u}_{2} \cdot \mathbf{u}_{1}+\mathbf{B}=\left\langle U_{\theta}\right\rangle_{0}+\left\langle U_{\theta}\right\rangle_{2}$ The rotor is a Scalar + Bivector, representing a multi-vector of the form $\quad A=\langle A\rangle_{0}+\langle A\rangle_{2}$, where the scalar $\langle A\rangle_{0}$ is the real $\mathbb{R}_{\mathrm{pqg}-0}$ quantity and $\langle A\rangle_{2}$ is a $\mathbb{R}_{i, \mathrm{pqg}-2}^{1}$ quantity.
The magnitude, also called the modulus of this multi-vector is $|A|=\sqrt{\left\langle A^{\dagger} A\right\rangle_{0}}$ so that
$|A|^{2}=\left\langle A^{\dagger} A\right\rangle_{0}=\left|\langle A\rangle_{0}\right|^{2}+\left|\langle A\rangle_{2}\right|^{2}$,
see later below section 5.3.8
For the rotor $(5.83)(5.85)$ this is $U^{\dagger} U=\left\langle U^{\dagger} U\right\rangle_{0}=\left|\langle U\rangle_{0}\right|^{2}+\left|\langle U\rangle_{2}\right|^{2}=(\cos \theta)^{2}+(\sin \theta)^{2}=1$.
5.2.7.3. The Plane-segment Unit

The finite rotor $U \neq 1$, different from the identical operator, has a fundamental unit for a pqg-2 plane segments: - Looking at the perpendicular rotor $U_{\perp}=\left\langle U_{\perp}\right\rangle_{0}+\left\langle U_{\perp}\right\rangle_{2}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}+\boldsymbol{\sigma}_{2} \wedge \boldsymbol{\sigma}_{1}=0+\boldsymbol{\sigma}_{2} \wedge \boldsymbol{\sigma}_{1}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}=\boldsymbol{i}=\boldsymbol{i}$, which is the simplest pqg-2 bivector direction in the rotation plane. We note the magnitude of \boldsymbol{i} is normalized $|\boldsymbol{i}|=1$ and the belonging

Figure 5.21 The rotor U where the unit sector area finite area of the plane segment which we set to 1 , although the unit circle where the unit sector area quadrant object angle sector area is $\pi / 4$, we multiply that with a sector has a radius of $4 / \pi$ radius $4 / \pi$, and we have 1 . The reversed-orientated area of $-\boldsymbol{i}$ is -1 , refer to (5.75). The rotor $U_{\perp}=\boldsymbol{i}$ turns everything in the plane 90° counterclockwise $\sim \theta=\pi / 2$, that is,

$$
\boldsymbol{i}=e^{\boldsymbol{i} \pi / 2}
$$

Here we remember that the bivector subject is a ghost as a plane amoeba shown in Figure 5.14 The bivector as object $\boldsymbol{i}=U_{\perp}=\left(\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}\right)$ defines the rotation plane as a specific $\boldsymbol{p q g}-2$ plane direction in space. Likewise, the same plane subject is spanned of the two linearly independent 1 -vectors $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$ by formula (5.23) $\mathbf{y}=\alpha \boldsymbol{\sigma}_{1}+\beta \boldsymbol{\sigma}_{2}$ to all 1-vector objects in that plane. This is where the two distinct pqg-1 directions are spanning plane $\gamma_{\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}}$

5.2.7.4. Rotor Independence of any pqg-1 Direction in a Plane Quality

In general, the rotor U is independent of all linear directions in space.
As 1 -vector objects a with the line segment direction independent of all
starting points, thereby translation invariant as shown in Figure 5.22, the rotor U is independent of any start 1 -vectors, see Figure 5.23. A rotor U is defining a rotational plane with a direction and a rotation corresponding to the $\overrightarrow{\mathrm{arc}}$ direction in its unit circle. A rotor object with a thought center is translation invariant. It is here noted that the rotor subject is not only a translation invariant but also rotation plane invariant, as shown in Figure 5.23 The 1-rotor U_{θ} as an operator of one angle ${ }^{229} \theta$ is equivalent to a complex exponential function whose argument is a bivector

Figure 5.23 One 1 -rotor in the plane \mathfrak{P}. Three separate objects for that one 1-roto subject are illustrated for intuition.

We remember \boldsymbol{i} and thus $\boldsymbol{i} \theta=\theta \boldsymbol{i}$ is a bivector,
in that θ is a real scalar for the angle $\overrightarrow{\operatorname{arc}}_{\theta}$. By this we also
assume an order of the scalar $\theta \in \overrightarrow{\mathbb{R}}$ according to the plane \boldsymbol{i} direction of rotation.
5.2.8. The Exponential Function with one plane direction Bivector as Argument

We note that the $1-$ rotor 230 exponential function is a serial development of one bivector
$e^{\boldsymbol{i} \theta}=\exp (\boldsymbol{i} \theta)=1+\frac{(\boldsymbol{i} \theta)}{1!}+\frac{(\boldsymbol{i} \theta)^{2}}{2!}+\frac{(\boldsymbol{i} \theta)^{3}}{3!}+\frac{(\boldsymbol{i} \theta)^{4}}{4!}+\frac{(\boldsymbol{i} \theta)^{5}}{5!}+\cdots$
which therefore is a 2 -multi-vector or just a 2 -vector. ${ }^{231^{5}}$
When we try $\theta=1$, we get one intuit object
$\mathbf{u} \boldsymbol{\sigma}=e^{\boldsymbol{i} 1}=1+\frac{\boldsymbol{i}}{1!}+\frac{\boldsymbol{i}^{2}}{2!}+\frac{\boldsymbol{i}^{3}}{3!}+\frac{\boldsymbol{i}^{4}}{4!}+\frac{\boldsymbol{i}^{5}}{5!}+\cdots$
this series of object operators are illustrated in Figure 5.24 as a multiplication operation to a start 1-vector $\boldsymbol{\sigma}$. Here in the plane substance $\exp (\boldsymbol{i} \theta)$ is scalar + bivector since $\boldsymbol{i} \theta$ in all the serial parts lay in the same plane subject as \boldsymbol{i},
The scalar $\left\langle U_{\theta}\right\rangle_{0}=\left\langle e^{\boldsymbol{i} \theta}\right\rangle_{0}=\cos \theta=1+\frac{(\boldsymbol{i} \theta)^{2}}{2!}+\frac{(\boldsymbol{i} \theta)^{4}}{4!}+\cdots$ and
The bivector $\left\langle U_{\theta}\right\rangle_{2}=\left\langle e^{\boldsymbol{i} \theta}\right\rangle_{2}=\boldsymbol{i} \sin \theta=+\frac{(\boldsymbol{i} \theta)}{1!}+\frac{(\boldsymbol{i} \theta)^{3}}{3!}+\frac{(\boldsymbol{i} \theta)^{5}}{5!}+$
In Figure 5.24 the 1-vector object $\boldsymbol{\sigma}$ is scaled with the scalar ${ }_{0}$, while the bivector2 too scales with the rotation perpendicular \perp to $\boldsymbol{\sigma}$. Note that the series (5.92) and (5.93) have alternating orientations in their terms, in that $(\boldsymbol{i} \theta)^{2}=-\theta^{2}$.

Figure 5.24 2-vector $\mathbf{u} \boldsymbol{\sigma}$: The exponential series for $=1$, over the bivector i rom a l-vector $\boldsymbol{\sigma}$ to another 1 -vector $\mathbf{u}=e^{\boldsymbol{i}_{\boldsymbol{\sigma}}}$
$\mathbf{u}=(\mathbf{u} \boldsymbol{\sigma}) \boldsymbol{\sigma}=e^{\boldsymbol{i} \theta} \boldsymbol{\sigma},(5.90)$. We see that the two 1-vector directions $\boldsymbol{\sigma}$ and $\boldsymbol{i} \boldsymbol{\sigma}$ give term with alternating orientations.
 e see that the two
${ }^{229}$ The term U_{θ} with argument θ as indices the rotor is in the plane for the angle, i.e., 2 -dimensional (2D), a 1-rotor pqg-2 direction ${ }^{230}$ The designation 1-rotor refers to an operation in one and the same plane defined by only one \boldsymbol{i} direction, for every $\theta \boldsymbol{i}$ bivector In chapter 6 we will tread the interconnection of several independent plane directions in natural space, (by that also 2-rotors).
${ }^{31}$ The blue odd exponents are bivectors, and the black even are scalars. Both multiplied a 1 -vector, which gives a 1 vector
© Jens Erfurt Andresen, M.Sc. NBI-UCPH,

For quotation reference use: ISBN-13: 978-8797246931

