- II. The Geometry of Physics – 5. The Geometric Plane Concept – 5.2. The Plane Geometric Algebra –

5.2.7.2. Intuition of the Bivector and the Scalar for the Interpretation of a Rotation

These rotations have a *direction* along the arc of the unit circle, a circular *direction* (arc_a) . The rotor U_{θ} is equivalent to Euler's formula of the unit circle in which the circle arc angle $\theta \in \mathbb{R}$ *quantity* is a measure. It is an objective argument in the function $\sin \theta$ defined as the measure of the arc height, which is the height of the parallelogram formed by the grade-2 bivector $\mathbf{u}_2 \wedge \mathbf{u}_1$, and thus the area of the parallelogram with a unit baseline, see Figure 5.20.

While the function $\cos \theta$ is defined as the **grade-0** measure from the center to the projection on the opposite 1-vector as the scalar product $\mathbf{u}_2 \cdot \mathbf{u}_1$, i.e., the co-linear magnitude (co-sinus).

• The bivector $\mathbf{B} = \mathbf{u}_2 \wedge \mathbf{u}_1 = \mathbf{i} \sin \theta$ constitute the area-segment, generated by the angle $\angle (\mathbf{u}_1, \mathbf{u}_2)$ in that plane *direction* given by the unit area-segment $\mathbf{i} = \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1$ multiplied by the relative height of the arc: $\sin \theta$ by the angle rises \perp rejection from the primary baseline 1-vector \mathbf{u}_1 . The scalar $\mathbf{u}_2 \cdot \mathbf{u}_1 = \cos \theta \in \mathbb{R}$ represents the relative co-linear magnitude part that is generated by the angle \angle (**u**₁, **u**₂) along one of the 1-vectors **u**₁ or **u**₂. (See also Figure 5.9)

These two components; the area segment plus the scalar part complement each other in the rotor (5.83), where the angle *quality* $\overrightarrow{arc}_{\theta} \sim \angle (\mathbf{u}_1, \mathbf{u}_2)$ through the real *quantity* $\theta = \measuredangle (\mathbf{u}_1, \mathbf{u}_2) \in \mathbb{R}$ is included as a real argument in the rotor

 $\overrightarrow{\operatorname{arc}}_{\theta} \to U_{\theta} = e^{i\theta} = \cos\theta + i\sin\theta = \mathbf{u}_{2}\mathbf{u}_{1} = \mathbf{u}_{2}\cdot\mathbf{u}_{1} + \mathbf{u}_{2}\wedge\mathbf{u}_{1} = \mathbf{u}_{2}\cdot\mathbf{u}_{1} + \mathbf{B} = \langle U_{\theta}\rangle_{0} + \langle U_{\theta}\rangle_{2}$ (5.86)The rotor is a Scalar + Bivector, representing a multi-vector of the form $A = \langle A \rangle_0 + \langle A \rangle_2$, where the scalar $\langle A \rangle_0$ is the real \mathbb{R}_{pqg-0} quantity and $\langle A \rangle_2$ is a $\mathbb{R}^1_{i,pqg-2}$ quantity.

The magnitude, also called the *modulus* of this multi-vector is $|A| = \sqrt{\langle A^{\dagger}A \rangle_0}$ so that $|A|^{2} = \langle A^{\dagger}A \rangle_{0} = |\langle A \rangle_{0}|^{2} + |\langle A \rangle_{2}|^{2},$ (5.87)see later below section 5.3.8. For the rotor (5.83)(5.85) this is $U^{\dagger}U = \langle U^{\dagger}U \rangle_0 = |\langle U \rangle_0|^2 + |\langle U \rangle_2|^2 = (\cos\theta)^2 + (\sin\theta)^2 = 1.$

5.2.7.3. The Plane-segment Unit

The finite rotor $U \neq 1$, different from the identical operator, has a fundamental unit for a pqg-2 plane segments: - Looking at the perpendicular rotor $U_{\perp} = \langle U_{\perp} \rangle_0 + \langle U_{\perp} \rangle_2 = \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2 \wedge \boldsymbol{\sigma}_1 = \boldsymbol{0} + \boldsymbol{\sigma}_2 \wedge \boldsymbol{\sigma}_1 = \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1 = \boldsymbol{i} = \boldsymbol{i},$ which is the simplest *pqg*-2 bivector *direction* in the rotation plane.

We note the magnitude of \mathbf{i} is normalized $|\mathbf{i}|=1$ and the belonging finite area of the plane segment which we set to 1, although the unit circle quadrant object angle sector area is $\pi/4$, we multiply that with a sector

radius $4/\pi$, and we have 1. The reversed-orientated area of $-\mathbf{i}$ is -1, refer to (5.75). The rotor $U_1 = i$ turns everything in the plane 90° counterclockwise $\sim \theta = \pi/2$, that is,

(5.88)
$$i = e^{i\pi/2}$$

C Jens Erfurt Andresen, M.Sc. Physics, Denmark

- 172 -Research on the a priori of Physics For quotation reference use: ISBN-13: 978-8797246931

Figure 5.21 The rotor U_{\perp} . where the unit sector area has a radius of $4/\pi$.

December 2022

Geometric Critique ∇ es earch on th of Pure $\overline{\mathbf{O}}$ 2 priori Mathematical Reasoning of Physics Edition lens Erfurt N \bigcirc N 020- \triangleright ndr とし \mathbf{O} S

-5.2.8. The Exponential Function with one plane direction Bivector as Argument -5.2.7.4 Rotor Independence of any pgg-1

Here we remember that the bivector subject is a ghost as a plane amoeba shown in Figure 5.14. The bivector as object $\mathbf{i} = U_1 = (\boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1)$ defines the rotation plane as a specific *pqg*-2 plane *direction* in space. Likewise, the same plane subject is spanned of the two linearly independent 1-vectors $\{\sigma_1, \sigma_2\}$ by formula (5.23) $\mathbf{v} = \alpha \sigma_1 + \beta \sigma_2$ to all 1-vector objects in that plane. This is where the two distinct *pqg*-1 *directions* are spanning plane $\gamma_{\{\sigma_1, \sigma_2\}}$.

5.2.7.4. Rotor Independence of any pgg-1 Direction in a Plane Quality In general, the rotor U is independent of all linear *directions* in space. As 1-vector objects **a** with the line segment *direction* independent of all starting points, thereby translation invariant as shown in Figure 5.22, the rotor U is independent of any start 1-vectors, see Figure 5.23. A rotor U is defining a rotational plane with a *direction* and a rotation corresponding to the arc direction in its unit circle. A rotor object with a thought center is translation invariant. It is here noted that the rotor subject is not only a translation invariant but also rotation plane invariant, as shown in Figure 5.23. The 1-rotor U_{θ} as an operator of one angle²²⁹ θ is equivalent to a complex exponential function whose argument is a bivector

(5.89)

 $U_{\theta} \coloneqq e^{i\theta}$

We remember \mathbf{i} and thus $\mathbf{i}\theta = \theta \mathbf{i}$ is a bivector, in that θ is a real scalar for the angle $\overrightarrow{arc}_{\theta}$. By this we also assume an order of the scalar $\theta \in \mathbb{R}$ according to the plane *i* direction of rotation.

5.2.8. The Exponential Function with one plane *direction* Bivector as Argument We note that the 1-rotor²³⁰ exponential function is a serial development of one bivector

(5.90)
$$e^{i\theta} = \exp(i\theta) = 1 + \frac{(i\theta)}{1!} + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{$$

(5.91)
$$\mathbf{u}\boldsymbol{\sigma} = e^{\boldsymbol{i}_1} = 1 + \frac{\boldsymbol{i}}{1!} + \frac{\boldsymbol{i}^2}{2!} + \frac{\boldsymbol{i}^3}{3!} + \frac{\boldsymbol{i}^4}{4!} + \frac{\boldsymbol{i}^5}{5!} + \cdots,$$

this series of object operators are illustrated in Figure 5.24
as a multiplication operation to a start 1-vector $\boldsymbol{\sigma}$.
Here in the plane substance $\exp(\boldsymbol{i}\theta)$ is *scalar* + *bivector*
since $\boldsymbol{i}\theta$ in all the serial parts lay in the same plane subject as \boldsymbol{i} ,

(5.92) The scalar
$$\langle U_{\theta} \rangle_0 = \langle e^{i\theta} \rangle_0 = \cos \theta = 1 + \frac{(i\theta)^2}{2!}$$

(5.93)

The bivector $\langle U_{\theta} \rangle_2 = \langle e^{i\theta} \rangle_2 = i \sin \theta = + \frac{(i\theta)}{1!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^5}{5!}$

In Figure 5.24 the 1-vector object $\boldsymbol{\sigma}$ is scaled with the scalar₀, while the bivector₂ too scales with the rotation perpendicular \perp to σ . Note that the series (5.92) and (5.93) have alternating orientations in their terms, in that $(\mathbf{i}\theta)^2 = -\theta^2$.

The term U_{θ} with argument θ as indices the rotor is in the plane for the angle, i.e., 2-dimensional (2D), a 1-rotor pgg-2 direction. ²³⁰ The designation 1-rotor refers to an operation in one and the same plane defined by only one *i direction*, for every θi bivector. In chapter 6 we will tread the interconnection of several independent plane *directions* in natural space, (by that also 2-rotors). ³¹ The blue odd exponents are bivectors, and the black even are scalars. Both multiplied a 1-vector, which gives a 1 vector.

-173

For quotation reference use: ISBN-13: 978-8797246931

Figure 5.23 One 1-rotor in the plane P. Three separate objects for that one 1-rotor subject are illustrated for intuition.

ivector $\frac{2}{4} + \frac{(i\theta)^4}{4!} + \cdots$ and

Figure 5.24 2-vector $\mathbf{u}\boldsymbol{\sigma}$: The exponential series for $\theta = 1$, over the bivector **i** from a 1-vector $\boldsymbol{\sigma}$ to another 1-vector $\mathbf{u} = e^{i} \boldsymbol{\sigma}$.

 $\mathbf{u} = (\mathbf{u}\boldsymbol{\sigma})\boldsymbol{\sigma} = e^{\boldsymbol{i}\boldsymbol{\theta}}\boldsymbol{\sigma}, (5.90).$ We see that the two 1-vector *directions* σ and $i\sigma$ give terms with alternating orientations.

December 2022