

The operator \boldsymbol{i} acts on 1-vectors that is rotated anti-clockwise to its perpendicular:
$\boldsymbol{i} \boldsymbol{\sigma}_{1}=+\boldsymbol{\sigma}_{2}, \quad \boldsymbol{i}^{1}=+\boldsymbol{i}=\quad \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$
(5.77)
$\boldsymbol{i} \boldsymbol{i}_{1}=-\boldsymbol{\sigma}_{1}, \quad i^{2}=-1 \cdot=\quad \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1} \boldsymbol{\sigma}_{2} \sigma_{1} \quad=\quad-\sigma_{2} \sigma_{2} \sigma_{1} \sigma_{1}$
$\boldsymbol{i} i i \sigma_{1}=-\sigma_{2}, \quad i^{3}=-i=\sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1}=-\sigma_{2} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1}$
$\boldsymbol{i} \boldsymbol{i i i} \sigma_{1}=+\sigma_{1}, \quad i^{4}=+1 \cdot=\sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{2} \sigma_{2} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{1} \sigma_{1}$
Using the unit bivector operation \boldsymbol{i} four times in the same plane the 1 -vector is turned once around the unit circle to itself. ${ }^{225}$

- Modulo ${ }^{226}$ for the unit circle is (iiiii$)$.

Here, I define the cyclic counting operator $\mathbf{1}=(\boldsymbol{i i i i} i)$ for each time there has been a full rotation of the circle, the result is identical $\mathbf{1}^{n} \boldsymbol{\sigma}_{1}=\boldsymbol{\sigma}_{1} \Leftrightarrow \boldsymbol{i}^{4 n} \boldsymbol{\sigma}_{1}=\boldsymbol{\sigma}_{1}, n \in \mathbb{N}$.

- Something happens in space. - One recognized the 1-vector once again n times. $_^{227}$

The operator $\boldsymbol{i} \boldsymbol{i}=\boldsymbol{i}^{2}=-1$. is an inversion (reverse) operator for geometric 1 -vectors just as scalar multiplication by $(-1) \in \mathbb{R}$. We have $\mathbf{a} \rightarrow \boldsymbol{i} \boldsymbol{i} \mathbf{a}=\boldsymbol{i}^{2} \mathbf{a}=-1 \cdot \mathbf{a}=-\mathbf{a}$. The operation switches the orientation of pqg-1 direction, also called an additive parity inversion or negation. In the cyclical process; the negation of the negation $(\boldsymbol{u i})(\boldsymbol{u} \boldsymbol{i})=\boldsymbol{i l i t}=1$ is an involution and leads back to the same $\mathbf{a} \rightarrow \boldsymbol{i i i i l}=\mathbf{a}$, but the result is one cyclic count of times
The cyclic process hereby enables a timing process. ${ }^{228}$
5.2.6.4. The Form Structure of the Plane Subject \boldsymbol{i} has Arbitrary Shaped Objects As a concept, the unit-bivector \boldsymbol{i} is the generating plane segment for the plane concept. The direction of \boldsymbol{i} determines the plane direction, and when \boldsymbol{i} operates on a 1 -vector direction $\boldsymbol{\sigma}_{\mathbf{1}}$ in the plane of \boldsymbol{i}, this 1 -vector is rotated into a second 1-vector direction $\boldsymbol{\sigma}_{2}=\boldsymbol{i} \boldsymbol{\sigma}_{1}$, whereby the basis set $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$ of 1-vectors gives the direction of the plane following $\sigma_{2} \sigma_{1}=\boldsymbol{i}$. The intuition of this object is synonymous with a directional circle object \boldsymbol{i} with radius $\frac{1}{\sqrt{\pi}}$ and surface area 1 as shown in Figure 5.14, and the amoeba object \boldsymbol{i}

- \boldsymbol{i} is synonymous with any directional plane amoeba area, which has direction as the primary quality of second grade (pqg-2)
- The generating plane segment, unit bivector i as subject, has always the objective quantitative magnitude $|i|=1$.

Figure 5.14 Example objects for the shapeless unit bivector $\boldsymbol{i} \boldsymbol{i}=\boldsymbol{i}$ as a plane segment subject.
${ }^{225}$ Note the sequential left operation. Alternatively, a similar right operation with $i=-\boldsymbol{i}=\sigma_{1} \sigma_{2}$ will perform the same. ${ }^{223}$
${ }^{26}$ Note that the modulo (iiii) has the plane segment area $|\boldsymbol{i i i i}|=1$, while the area of the unit circle is π, and plane segment area count $4|\boldsymbol{i}|$, the four times unit - square area, i. e. 4. But any way, the result iiiii $\boldsymbol{\sigma}_{1}=\boldsymbol{\sigma}_{1}$ is still a 1 -vector, counted once ${ }^{227}$ My opinion is: this is fundamental to catching any information.
${ }^{228}$ The negation of the negation is a philosophical expression by Hegel used by Frederick Engels in 1877 in Anti-Dühring:
The negation of the negation is not necessarily a cancellation, this makes the development of history possible.
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark

170 - Research on the a priori of Physics
For quotation reference use: ISBN-13: 978-8797246931

- 5.2.7. The Unitary Rotor Operator as a Concept - 5.2.7.1 The Geometric Rotor in the Euclidean Plane -

5.2.6.5. The Unit-bivector \boldsymbol{i} Multiplied by a 1-vector

Given an arbitrary 1 -vector a, selecting a unit-base-vector $\boldsymbol{\sigma}_{1}=\hat{\mathbf{a}}$ in the same direction, that a can be expressed as a scalar $\alpha \in \mathbb{R}$ multiplied unit-base-vector

(5.78) $\quad \mathbf{a}=\alpha \sigma_{1}$

When the operator \boldsymbol{i} acts on the 1 -vector from left we get $\quad \boldsymbol{i}=\mathbf{b}$, where $\mathbf{b}=\alpha \boldsymbol{\sigma}_{2}$ and $\mathbf{b}^{2}=\mathbf{a}^{2}$. But when it acts from right, we get $\mathbf{a} \boldsymbol{i}=-\mathbf{b}$. When we multiply these equations by the inverse 1 -vector \mathbf{a}^{-1} defined by $\mathbf{a}^{-1} \mathbf{a}=\mathbf{a} \cdot \mathbf{a}^{-1}=1$, where \mathbf{a}^{-1} is co-linear to \mathbf{a}, as follows from the right $\boldsymbol{i} \mathbf{a a}^{-1}=\mathbf{b a}^{-1}$, and the left $\mathbf{a}^{-1} \mathbf{a} \boldsymbol{i}=-\mathbf{a}^{-1} \mathbf{b}$, we get

Based on the premise for this we have $\mathbf{b}^{2} \mathbf{a}^{-2}=1$, in that $\alpha^{2} \alpha^{-2}=1$ See also Figure 5.12 at formula (5.73) for rotation orientation.
5.2.7. The Unitary Rotor Operator as a Concept

We have seen that the operator \boldsymbol{i} rotates a geometric 1-vector $\boldsymbol{\sigma}_{1}$ to the orthogonal $\boldsymbol{\sigma}_{2}$ We associate this with the operator concept called a rotor U_{θ} for a rotation through a plane direction with a dedicated angle θ Especially the orthogonal rotation $U_{\perp}=\boldsymbol{i}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ through the
plane-segment as we intuit with the square object $\boldsymbol{\sigma}_{2} \perp \boldsymbol{\sigma}_{1}$ which we see as the generator unit for a possible rotation in the plane or even the plane concept itself.

5.2.7.1. The Geometric Rotor in the Euclidean Plane

We are now looking at two unit-1-vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ with a mutual angle θ, spanning a plane from an origo point O , like in § 5.2.2.3
For the unitary 1 -vectors applying $\mathbf{u}_{2}^{2}=\mathbf{u}_{1}^{2}=1 \Rightarrow\left|\mathbf{u}_{2}\right|=\left|\mathbf{u}_{1}\right|=1$,
Figure 5.17

as well as $\boldsymbol{i}^{2}=-1$. See an object in Figure 5.17. From (5.49) we have $\angle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$.

Condition $U^{\dagger} U=U U^{\dagger}=1$ is the requirement for a unitary operator.
Thus, we have the identical operation $U U^{\dagger} \mathbf{u}_{1}=\mathbf{u}_{1}$, displayed in Figure 5.16
As the rotor U_{θ} is unitary $U_{\theta} U_{\theta}^{\dagger}=1$, and the magnitude of the rotor is $|U|=1$.
Such simple rotors in one plane are called 1-rotors for only one plane grade-2 direction.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\mathbf{u}_{2} \mathbf{u}_{1}=\mathbf{u}_{2} \cdot \mathbf{u}_{1}+\mathbf{u}_{2} \wedge \mathbf{u}_{1}$
We now for $\forall \theta \in \mathbb{R}$ define a rotor from this geometric product

$$
U_{\theta}=\mathbf{u}_{2} \mathbf{u}_{1}=\mathbf{u}_{2} \cdot \mathbf{u}_{1}+\mathbf{u}_{2} \wedge \mathbf{u}_{1}=\cos \theta+\boldsymbol{i} \sin \theta:=e^{+\boldsymbol{i} \theta}
$$

The reverse rotor is then

$$
U_{\theta}^{\dagger}=\mathbf{u}_{1} \mathbf{u}_{2}=\mathbf{u}_{1} \cdot \mathbf{u}_{2}-\mathbf{u}_{2} \wedge \mathbf{u}_{1}=\cos \theta-\boldsymbol{i} \sin \theta:=e^{-\boldsymbol{i} \theta}
$$

Together, the rotor and its reverse are the identical operators

$$
U^{\dagger} U=U U^{\dagger}=1 \Leftrightarrow \mathbf{u}_{2} \mathbf{u}_{1} \mathbf{u}_{1} \mathbf{u}_{2}=U_{\theta} U_{\theta}^{\dagger}=e^{\boldsymbol{i} \theta} e^{-\boldsymbol{i} \theta}=e^{\boldsymbol{i} 0}=1
$$

$\boldsymbol{i} \sin \theta:=\mathbf{u}_{2} \wedge \mathbf{u}_{1} \in \boldsymbol{i} \mathbb{R}_{i, \mathrm{pqg}-2}^{1}$,
which by squaring $-\sin ^{2} \theta:=\left(\mathbf{u}_{2} \wedge \mathbf{u}_{1}\right)^{2}$ justified by (5.62) See Figure 5.20 for an illustration of $\cos \theta$ and $\sin \theta$

The geometric product (5.59) is defined for the two unitary 1 -vectors

For quotation reference use: ISBN-13: 978-8797246931

