Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

This leads to, that the area segment of a subject bivector B in principle is a pseudoscalar ${ }^{20}$ for the plane, even though the object $\mathbf{b} \perp \mathbf{a}$ rectangle has a scalar area magnitude
$|\mathrm{B}|=|\mathbf{b}||\mathbf{a}| \in \mathbb{R}_{+} \geq 0$
We say that the unit bivector $\widehat{\mathbf{B}}$ is the unit pseudoscalar for that plane it defines.
5.2.5.4. A Bivector Multiplied by a 1 -vector

First, a bivector is defined as its resolution of two 1 -vectors $\mathrm{B}=\mathbf{b} \wedge \mathbf{a}$, that in the tradition span the plane concept substance. In that plane, an outer product of three 1 -vectors vanish $\mathbf{b} \wedge \mathbf{a} \wedge \mathbf{c}=0$.
Therefor $\mathrm{B} \wedge \mathbf{c}=0$ express that any relevant 1 -vector \mathbf{c} is internal in the plane spanned by B. ${ }^{221}$
A bivector B anticommute in multiplying by any each 1-vector in its plane
(5.68) $\mathrm{Ba}=-\mathbf{a B}$
the reason is, there exist $\mathbf{a b}$ using (5.66) $\exists \mathbf{b} \cdot \mathbf{a}=0 \Rightarrow \mathrm{~B}=\mathbf{b a} \Rightarrow \mathrm{Ba}=\mathbf{b a a}=-\mathbf{a b a}=-\mathbf{a b}$.
This product in a plane is a 1 -vector $\mathrm{Ba}=\mathbf{b a}^{2} \Rightarrow \mathbf{b}=\mathrm{Ba} / \mathbf{a}^{2}$
The multiplicative inverse 1 -vector from (4.76)

$$
\mathbf{a}^{-1}=\left(\frac{1}{\mathbf{a}}\right)=\frac{\mathbf{a}}{\mathbf{a}^{2}}
$$

makes it possible to divide with a 1 -vector in the same plane.
$\mathrm{Ba}^{-1}=-\mathbf{a}^{-1} \mathrm{~B}$
or rather multiplying by the inverse 1 -vector from the right or left is anti-commuting. ${ }^{222}$
5.2.5.5. The Category a Bivector

We conclude the fundamental category for the conceptual bivector idea:
Bivectors may be the same or different. An individual bivector can be divided into several
bivectors, and different bivectors can be combined into one bivector. A bivector quality we give by a direction unity-plane-segment bivector \widehat{B} by def. (5.65) applied to (5.66), hence

$$
\widehat{\mathrm{B}}^{2}=-|\widehat{\mathrm{B}}|^{2}=-1
$$

The squared normalized quantity of a plane-segment direction $\widehat{\mathrm{B}}$ is then $-1 \in \mathbb{R}_{\mathrm{pqg}}^{1}$-2
The bivector quantity is simply performed by $\mathrm{B}=\beta \widehat{\mathrm{B}}$ for $\forall \beta \in \mathbb{R}_{\mathrm{pqg}-2}^{1}$.
This factor β span a plane from $\widehat{\mathrm{B}}$.
Bivectors have existence or not by multiplication of 1 -vectors in two important particular cases of possible existing 1 -vectors:
Orthogonal 1-vectors anticommute $\mathbf{b} \cdot \mathbf{a}=0 \Leftrightarrow \mathbf{b a}=-\mathbf{a b}, \cos \theta=0$

Collinear $\quad 1$-vectors commute $\mathbf{a}=\lambda \mathbf{b} \Leftrightarrow \mathbf{b} \wedge \mathbf{a}=0 \Leftrightarrow \mathbf{b a}=\mathbf{a b}, \quad \sin \theta=0$

$$
\xrightarrow{{ }^{b^{a}}}
$$

Two colinear 1 -vectors do not constitute a bivector
Two orthogonal 1 -vectors constitute a wedge product for a plane rectangular area.
${ }^{20}$ In Geometric Algebra (Clifford Algebra) the pseudoscalars are the highest grade elements in the primary quality grades that are necessary for the algebra. Euclidian pseudoscalars square to a negative scalar and commute with all even elements.
${ }_{21}$ A third 1 -vector \mathbf{c} will give impact $\mathbf{b} \wedge \mathbf{a} \wedge \mathbf{c} \neq 0$ when it is exterior to the plane $\mathbf{b} \wedge \mathbf{a}$. (see later below chapter 6). ${ }^{222}$ The division symbol $\frac{B}{\mathbf{a}}$ makes no sense! But multiplication by the inverse 1 -vector $\mathbf{a}^{-1}=\frac{1}{\mathbf{a}}$ from the right or the left is allowed.
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark
-168
Research on the a priori of Physics - December 2022

- 5.2.6. The Orthonormal Bivector Object as a Unit for the Circular Rotation in a Plane - 5.2.6.3 Operations with the Unit
5.2.6. The Orthonormal Bivector Object as a Unit for the Circular Rotation in a Plane

We look at the orthogonal unit vectors $\boldsymbol{\sigma}_{1}$ and $\boldsymbol{\sigma}_{2}$ also called an orthonormal basis $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$ for a plane. - By definition, it applies a priori:
Orthogonal: $\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}=0$ and Normalised: $\boldsymbol{\sigma}_{1}{ }^{2}=\boldsymbol{\sigma}_{2}{ }^{2}=1 \Rightarrow\left|\boldsymbol{\sigma}_{1}\right|=\left|\boldsymbol{\sigma}_{2}\right|=1$
From here we form a bivector for the plane that we call $\boldsymbol{i}:=\boldsymbol{\sigma}_{2} \wedge \sigma_{1}$
Since $\sigma_{2} \cdot \boldsymbol{\sigma}_{1}=0$, for this bivector we have

$$
\text { (5.72) } \quad i=\sigma_{2} \wedge \sigma_{1}=\frac{1}{2}\left(\sigma_{2} \sigma_{1}-\sigma_{1} \sigma_{2}\right)=\sigma_{2} \sigma_{1}
$$

as just the product of the two orthonormal basis vectors for the plane and by antisymmetric permutation, we have the two orientations ${ }^{22}$ σ_{1}
(5.73)

$\boldsymbol{i}:=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1} \quad$ with the commuted $\quad-\boldsymbol{i}=\boldsymbol{\sigma}_{1} \boldsymbol{\sigma}_{2}$

Which means that \boldsymbol{i} is the special multivector constituted by one bivector
According to $\left|\boldsymbol{\sigma}_{1}\right|=\left|\boldsymbol{\sigma}_{2}\right|=1$ in (5.66) and $\boldsymbol{\sigma}_{2} \cdot \boldsymbol{\sigma}_{1}=0 \Rightarrow \sin ^{2} \theta=1$ in
(5.62), together with (5.71) we have the auto product

(5.74)

$$
i \boldsymbol{i}=i^{2}=-1
$$

This leads to the normalized magnitude of $|\boldsymbol{i}|=|-\boldsymbol{i}|=1$ Therefore, both \boldsymbol{i} and $-\boldsymbol{i}$ are the two unitary bivectors. The unit for the direction of a plane segment $\widehat{\mathrm{B}}$ has two eigenstates

$$
\text { (5.75) } \quad \widehat{\mathrm{B}}= \pm \boldsymbol{i}= \pm 1 \boldsymbol{i}, \quad \text { in that } \quad \widehat{\mathrm{B}}^{2}=\boldsymbol{i}^{2}=-|\boldsymbol{i}|^{2}=-|\widehat{\mathrm{B}}|^{2}=-1
$$

Figure 5.12 Unit 2-blad $\boldsymbol{i}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ or $-\boldsymbol{i}=\boldsymbol{\sigma}_{1} \boldsymbol{\sigma}_{2}$ and $\pm \pi / 2$ rotation objects.

We say that the unit-plane-segment direction $\widehat{\mathrm{B}}$ has two eigenvalues 1 and -1
Compared with quantum mechanics we intuit \boldsymbol{i} as a direction operator for a unit-area-segment.
Any arbitrary plane area $\beta=|\mathrm{B}| \geq 0$ provided by a bivector $\mathrm{B}=\beta \widehat{\mathrm{B}}$ quantity for a plane-segment $\boldsymbol{p q g}$ - 2 direction thus has two eigenstates $\mathrm{B}^{+}=+\beta \boldsymbol{i}$ or $\mathrm{B}^{-}=-\beta \boldsymbol{i}$ and the quantitative eigenvalues $+\beta$ and $-\beta$ for each area. When you have an area, you should seriously consider its orientation and which of the two bivectors B or -B you use for intuition.
5.2.6.2. The Hodge Coordinate for the Pseudoscalar Span in the \mathfrak{P} plane Concep All bivector pseudoscalars in the plane \mathfrak{P} idea are proportional to the basic unit bivector

(5.76) $\quad \mathrm{B}=\beta \boldsymbol{i}$

For all $\forall \beta \in \mathbb{R}$ we have the Hodge ${ }^{224}$ map: $\beta \rightarrow\left({ }^{*} \beta\right)=\mathrm{B}=\beta \boldsymbol{i}$ for the plane idea. This is a linear one-to-one map from the real numbers to the pseudoscalars of the directional primary quality of second grade (pqg-2) for the \mathfrak{P} plane concept. These pseudoscalars represent the directional area quantity of a plane, where the negative parameter coordinates $\beta<0$ represent the retrograde area opposite orientated to a progressive area $\beta>0$. ($\beta=0$ represent every $\boldsymbol{p q g}$ - 0 point in \mathfrak{P} without any direction).

5.2.6.3. Operations with the Unit Bivector Pseudoscalar for a Plane

The operator \boldsymbol{i} acts on the space concept \mathfrak{G} and creates one plane direction.
Implicitly $\boldsymbol{i}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ is given by the two orthonormal geometric 1-vector-operators. First $\boldsymbol{\sigma}_{1}$ operates in space and sets a linear direction, then σ_{2} operates perpendicular to σ_{1} through space and by that spans a plane direction through the plane unit segment $\boldsymbol{i}:=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$
${ }^{223}$ I am sorry to tell you that this book uses the reversed order of that first defined by David Hestenes in [6] and [5] (11) It is essential for the intuition in this book that we use the sequential left operational order in vector multiplication like function operation $f \circ g=f(g)=f g$. Then the unit pseudoscalar bivector for the plane is $\boldsymbol{i} \equiv \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$
${ }^{224}$ The idea to call this a Hodge map of the form $\beta \rightarrow * \beta$ is taken from reference [35].
© Jens Erfurt Andresen, M.Sc. NBI-UCPH
For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

