Geometric

Critique

of Pure

Mathematical Reasoning

 (\mathbf{I})

dition

020-

en

 \mathbf{v}

rfurt

ndr

SO.

 \mathbf{O}

 $\mathbf{\nabla}$

esearch

on

the

ρ

priori

of

Physics

- II. The Geometry of Physics – 5. The Geometric Plane Concept – 5.2. The Plane Geometric Algebra –

This leads to, that the area segment of a subject bivector **B** in principle is a *pseudoscalar*²²⁰ for the plane, even though the object $\mathbf{b} \perp \mathbf{a}$ rectangle has a scalar area magnitude

$|\mathbf{B}| = |\mathbf{b}||\mathbf{a}| \in \mathbb{R}_+ \geq 0.$ (5.67)

We say that the unit bivector $\hat{\mathbf{B}}$ is the *unit pseudoscalar* for that plane it defines.

5.2.5.4. A Bivector Multiplied by a 1-vector

First, a bivector is defined as its resolution of two 1-vectors $\mathbf{B}=\mathbf{b}\wedge\mathbf{a}$, that in the tradition span the plane concept substance. In that plane, an outer product of three 1-vectors vanish $\mathbf{b} \wedge \mathbf{a} \wedge \mathbf{c} = 0$. Therefor $\mathbf{B} \wedge \mathbf{c} = \mathbf{0}$ express that any relevant 1-vector **c** is internal in the plane spanned by **B**.²²¹

A bivector **B** anticommute in multiplying by any each 1-vector in its plane

$\mathbf{B}\mathbf{a} = -\mathbf{a}\mathbf{B}$ (5.68)

the reason is, there exist a **b** using (5.66) $\exists \mathbf{b} \cdot \mathbf{a} = 0 \Rightarrow \mathbf{B} = \mathbf{b}\mathbf{a} \Rightarrow \mathbf{B}\mathbf{a} = \mathbf{b}\mathbf{a}\mathbf{a} = -\mathbf{a}\mathbf{b}\mathbf{a} = -\mathbf{a}\mathbf{B}$. This product in a plane is a 1-vector **Ba** = $ba^2 \Rightarrow b = Ba/a^2$ The multiplicative inverse 1-vector from (4.76)

$$(5.69) a^{-1} = \left(\frac{1}{a}\right) = \frac{a}{a^2}$$

makes it possible to *divide* with a 1-vector in the same plane.

(5.70)
$$Ba^{-1} = -a^{-1}B$$

or rather multiplying by the inverse 1-vector from the right or left is anti-commuting.²²²

5.2.5.5. The Category a Bivector

We conclude the fundamental *category* for the conceptual bivector idea: Bivectors may be the same or different. An individual bivector can be divided into several bivectors, and different bivectors can be combined into one bivector. A bivector quality we give by a *direction* unity-plane-segment bivector $\hat{\mathbf{B}}$ by def. (5.65) applied to (5.66), hence

$$\widehat{\mathbf{B}}^2 = -\left|\widehat{\mathbf{B}}\right|^2 =$$

The squared normalized *quantity* of a plane-segment *direction* $\hat{\mathbf{B}}$ is then $-1 \in \mathbb{R}^{1}_{pag-2}$. The bivector *quantity* is simply performed by $\mathbf{B} = \beta \hat{\mathbf{B}}$ for $\forall \beta \in \mathbb{R}^{1}_{\text{pag-2}}$.

This factor β span a plane from $\hat{\mathbf{B}}$.

Bivectors have existence or not by multiplication of 1-vectors in

two important particular cases of possible existing 1-vectors:

Orthogonal 1-vectors anticommute $\mathbf{b} \cdot \mathbf{a} = 0 \Leftrightarrow \mathbf{b} \mathbf{a} = -\mathbf{a} \mathbf{b}, |\cos \theta = 0|$ *Collinear* 1-vectors commute $\mathbf{a} = \lambda \mathbf{b} \Leftrightarrow \mathbf{b} \wedge \mathbf{a} = \mathbf{0} \Leftrightarrow \mathbf{b} \mathbf{a} = \mathbf{a} \mathbf{b}$, $\sin \theta = \mathbf{0}$ a 1-vector **a** is colinear with itself, so $\mathbf{a} \wedge \mathbf{a} = 0$, for $\forall \mathbf{a}$, as well $\mathbf{a} \cdot \mathbf{a} = \mathbf{a}^2$

Two *colinear* 1-vectors do not constitute a bivector.

Two orthogonal 1-vectors constitute a wedge product for a plane rectangular area.

²²⁰ I	n Geometric Algebra (Clifford Algebra) the pseudoscalars are the highest grade elements in the primary quality grades that a
t	necessary for the algebra. Euclidian pseudoscalars square to a negative scalar and commute with all even elements.
²²¹ A	A third 1-vector c will give impact $b \land a \land c \neq 0$ when it is exterior to the plane $b \land a$. (see later below chapter 6).
222 -	\mathbf{r}_1 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_4 \mathbf{R}_1 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_4 \mathbf

The division symbol $\frac{\mathbf{n}}{2}$ makes no sense! But multiplication by the inverse 1-vector $\mathbf{a}^{-1} = \frac{1}{\mathbf{a}}$ from the right or the left is allowed.

C Jens Erfurt Andresen, M.Sc. Physics, Denmark - 168 December 2022 Research on the a priori of Physics

For quotation reference use: ISBN-13: 978-8797246931

-5.2.6. The Orthonormal Bivector Object as a Unit for the Circular Rotation in a Plane -5.2.6.3 Operations with the Unit

5.2.6. The Orthonormal Bivector Object as a Unit for the Circular Rotation in a Plane We look at the orthogonal unit vectors σ_1 and σ_2 also called an orthonormal basis $\{\sigma_1, \sigma_2\}$ for a plane. – By definition, it applies a priori: Orthogonal: $\mathbf{\sigma}_1 \cdot \mathbf{\sigma}_2 = 0$ and Normalised: $\mathbf{\sigma}_1^2 = \mathbf{\sigma}_2^2 = 1 \Rightarrow |\mathbf{\sigma}_1| = |\mathbf{\sigma}_2| = 1$. From here we form a bivector for the plane that we call $\mathbf{i} \coloneqq \mathbf{\sigma}_2 \wedge \mathbf{\sigma}_1$ Since $\sigma_2 \cdot \sigma_1 = 0$, for this bivector we have (5.72)as just the product of the two orthonormal basis vectors for the plane and by antisymmetric permutation, we have the two orientations²²³ (5. σ_2 Which means that \mathbf{i} is the special multivector constituted by one bivector. According to $|\mathbf{\sigma}_1| = |\mathbf{\sigma}_2| = 1$ in (5.66) and $\mathbf{\sigma}_2 \cdot \mathbf{\sigma}_1 = 0 \Rightarrow \sin^2 \theta = 1$ in (5.62), together with (5.71) we have the auto product (5 This leads to the normalized magnitude of $|\mathbf{i}| = |-\mathbf{i}| = 1$ Therefore, both \mathbf{i} and $-\mathbf{i}$ are the two unitary bivectors. Figure 5.12 Unit 2-blade The unit for the *direction* of a plane segment $\hat{\mathbf{B}}$ has two eigenstates $\mathbf{i} = \mathbf{\sigma}_2 \mathbf{\sigma}_1$ or $-\mathbf{i} = \mathbf{\sigma}_1 \mathbf{\sigma}_2$ and $\pm \pi/2$ rotation objects. $-\left|\widehat{\mathbf{B}}\right|^2 = -1$ (5.7

2)
$$\mathbf{i} = \mathbf{\sigma}_2 \wedge \mathbf{\sigma}_1 = \frac{1}{2} (\mathbf{\sigma}_2 \mathbf{\sigma}_1 - \mathbf{\sigma}_1 \mathbf{\sigma}_2) = \mathbf{\sigma}_2 \mathbf{\sigma}_1$$

(4.73)
$$\boldsymbol{i} \coloneqq \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1$$
 with the commuted $-\boldsymbol{i} = \boldsymbol{\sigma}_1$

5.74)
$$ii = i^2 = -1$$
.

75)
$$\hat{\mathbf{B}} = \pm i = \pm 1i$$
, in that $\hat{\mathbf{B}}^2 = i^2 = -|i|^2 =$

We say that the unit-plane-segment *direction* $\hat{\mathbf{B}}$ has two eigenvalues 1 and -1. Compared with quantum mechanics we intuit **i** as a *direction operator* for a unit-area-segment. Any arbitrary plane area $\beta = |\mathbf{B}| \ge 0$ provided by a bivector $\mathbf{B} = \beta \hat{\mathbf{B}}$ quantity for a plane-segment pgg-2 direction thus has two eigenstates $\mathbf{B}^+ = +\beta \mathbf{i}$ or $\mathbf{B}^- = -\beta \mathbf{i}$ and the quantitative eigenvalues $+\beta$ and $-\beta$ for each area. When you have an area, you should seriously consider its orientation and which of the two bivectors **B** or $-\mathbf{B}$ you use for intuition.

5.2.6.2. The Hodge Coordinate for the Pseudoscalar Span in the P plane Concept

All bivector pseudoscalars in the plane \mathfrak{P} idea are proportional to the basic unit bivector

$$(5.76) \qquad \mathbf{B} = \beta \mathbf{i}$$

For all $\forall \beta \in \mathbb{R}$ we have the Hodge²²⁴ map: $\beta \to (*\beta) = \mathbf{B} = \beta \mathbf{i}$ for the plane idea. This is a linear one-to-one map from the real numbers to the pseudoscalars of the *directional* primary quality of second grade (pqg-2) for the P plane concept. These pseudoscalars represent the *directional* area *quantity* of a plane, where the negative parameter coordinates $\beta < 0$ represent the retrograde area opposite orientated to a progressive area $\beta > 0$. ($\beta = 0$ represent every *pqg*-0 point in \mathfrak{P} without any *direction*).

5.2.6.3. Operations with the Unit Bivector Pseudoscalar for a Plane The operator \mathbf{i} acts on the space concept \mathfrak{G} and creates one plane *direction*. Implicitly $\mathbf{i} = \mathbf{\sigma}_2 \mathbf{\sigma}_1$ is given by the two orthonormal geometric 1-vector-operators. First $\mathbf{\sigma}_1$ operates in space and sets a linear *direction*, then σ_2 operates perpendicular to σ_1 through space and by that spans a plane *direction* through the plane unit segment $\mathbf{i} \coloneqq \mathbf{\sigma}_2 \mathbf{\sigma}_1$.

 223 I am sorry to tell you that this book uses the reversed order of that first defined by David Hestenes in [6] and [5] (11). It is essential for the intuition in this book that we use the sequential left operational order in vector multiplication like function operation $f \circ g = f(g) = fg$. Then the unit pseudoscalar bivector for the plane is $|\mathbf{i} \equiv \sigma_2 \sigma_1|$ ²²⁴ The idea to call this a Hodge map of the form $\beta \to *\beta$ is taken from reference [35]

© Jens Erfurt Andresen, M.Sc. NBI-UCPH,

- 169

For quotation reference use: ISBN-13: 978-8797246931

Edition 2 – 2020-22