

In Figure 5.10, this is displayed as the progressive orientation $\cup+$ from 1-vector object \mathbf{a} to \mathbf{b} forming a representative subject bivector $\mathrm{B}=\mathbf{b} \wedge \mathbf{a}$ as a plane substance direction quality. The reverse-orientated bivector $A=-B=\mathbf{a} \wedge \mathbf{b}$ is shown as the operator $\mathbf{a} \wedge$ pulling 1-vector \mathbf{b} through space and forming a plane segment $\mathbf{a} \wedge \mathbf{b}$ with retrograde orientation from 1-vector object \mathbf{b} to a forming the subject $\mathrm{A}=-\mathrm{B}=-\mathbf{b} \wedge \mathbf{a}$ with reversed orientation U - of the area direction of -B . In addition to the two rotation orientations of a plane segment area $|\mathrm{B}|=|-\mathrm{B}|$ provided by the opposite bivectors $\mathbf{a} \wedge \mathbf{b}$ and $\mathbf{b} \wedge \mathbf{a}$, the plane area segment has also a front and a back of a surface (paperlscreen seen by an external observer). If the rotation direction as seen from the fron is in a clockwise orientation, it is counterclockwise viewed from the back.
Consequently, only the sequential algebraic order of the 1-vector operations has an impact on the reversion. This is very important for the intuition of a bivector concept as a pure algebraic object definition $B=\mathbf{b} \wedge \mathbf{a}$ of a geometric subject. The orientation $\circlearrowright(-), \cup(+)$ is here irrelevant since it depends on whether the outer observer is in front or at the back of the paper (f-b-rationale), like seeing the clock face at the front or from the back.
Later below for generalised multivectors, we will use \dagger to mark the reversed, e.g., then $\mathbf{B}^{\dagger}=\mathbf{a} \wedge \mathbf{b}$
5.2.5.3. Bivector Quantity and Form Structure Quality Direction

Just as the geometric a pqg-1-vector line-segment object can be written as a scalar quantity α multiplied by a direction unit 1 -vector â representing the pqg-1 quality
(5.64) $\quad \mathbf{a}=\alpha \hat{\mathbf{a}}=|\mathbf{a}| \mathbf{u}$, where $\alpha=|\mathbf{a}| \in \mathbb{R}_{+}, \quad$ and $\quad \hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|}=\mathbf{u}$, that $|\hat{\mathbf{a}}|=|\mathbf{u}|=1 \in \mathbb{R}_{+}$,
a bivector B is also written as a real scalar quantity β multiplied by a unit bivector $\widehat{\mathrm{B}}$ as a plane direction in space, representing the pure pqg-2 quality
(5.65) $\quad \mathrm{B}=\beta \widehat{\mathrm{B}}=|\mathrm{B}| \widehat{\mathrm{B}}$, where $\beta=|\mathrm{B}| \in \mathbb{R}_{+}, \quad$ and $\widehat{\mathrm{B}}=\frac{\mathrm{B}}{|\mathrm{B}|} \quad$ that $\quad|\widehat{\mathrm{B}}|=1 \in \mathbb{R}_{+}$.
$\widehat{\mathrm{B}}$ is the unit for the direction of a plane segment as the primary quality of second grade (pqg-2). Thus $\mathrm{B}=\beta \widehat{\mathrm{B}}$ is also a plane pqg-2 quality. The quantity of the bivector is its area magnitude $\beta=|\mathrm{B}| \in \mathbb{R}_{\mathrm{pqg}-2}$ and the unit bivector has unit area magnitude $|\widehat{\mathrm{B}}|=1 \in \mathbb{R}_{+}$, where
$\widehat{\mathrm{B}}$ is the special unit pqg-2 direction quality of a plane in the space concept $(\mathfrak{F}$ in physics. Negative values of the quotient scalar $\beta_{-}=(-\beta)<0$ are allowed, e.g., the opposite orientation $\mathbf{A}=-\mathbf{B}=\beta_{-} \widehat{\mathbf{B}}$. This makes $\mathbf{B}=\beta \widehat{\mathrm{B}}$ a quantity of type $\forall \beta \in\left[\mathbb{R}_{\text {pqg-2 }}\right]$ in the plane given by $\widehat{\mathbf{B}}$.
The bivector $\mathrm{B}=\beta \widehat{\mathrm{B}}$ is independent of the plane-segment shape in the plane space, a parallelogram rectangle, or circle etc. only the direction $\widehat{\mathrm{B}}$ and magnitude $\beta=|\mathrm{B}|$ of the area is preserved.
This is the preserved quantity joint with its quality independent of the amoeba shape change.

Figure 5.11 The B bivector does not have any specific geometrical shape but represents a plane segment with pqg-2 direction. Iconic the circular shape is preferable because it just highlights the plane symmetry and no linear pqg-1 direction. The bivector circle or the figure shape defines the exact plane of the surface it is drawn on as an object for the intuition of the plane concept \mathfrak{P}.

Do we have a 1 -vector \mathbf{a} in the plane for a bivector \mathbf{B} we can find ${ }^{219}$ a 1-vector \mathbf{b} in the plane so $B=\mathbf{b} \wedge \mathbf{a}$. This bivector B can with definition (5.59) be rewritten $B=\mathbf{b} \wedge \mathbf{a}=\mathbf{b a}-\mathbf{b} \cdot \mathbf{a}$
Here the scalar product can disappear $\mathbf{b} \cdot \mathbf{a}=0$ according to (5.49) for the perpendicular
1 -vector $\mathbf{b} \perp \mathbf{a}$, which performs a rectangle B that corresponds precisely to the plane segment B
(\perp gives $\cos \theta=0$ and $\sin \theta=1$), whereby we due (5.58) and (5.62) apply
$\begin{aligned} & \mathrm{B}=\mathbf{b a}=-\mathbf{a b} \\ & \mathrm{B}^{2}=-|\mathrm{B}|^{2}=-|\mathbf{b}|^{2}|\mathbf{a}|^{2},\end{aligned}=\mathbf{a} \wedge \mathbf{b}=-\mathbf{b} \wedge \mathbf{a}$,
when $\mathbf{b} \perp \mathbf{a} \Leftrightarrow \mathbf{b} \cdot \mathbf{a}=0$, a rectangle
${ }^{219}$ The linear combination for every 1 -vector in the plane (5.23) enables this.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-167-\quad$ Volume I, - Edition 2-2020-22, - Revision 6,

Figure 5.10 The quality of the object Bivector $\mathbf{b} \wedge \mathbf{a}$ spans the area quantity magnitude $|\mathbf{b} \wedge \mathbf{a}|$.
The area spanned direction $B=\mathbf{b} \wedge \mathbf{a}$ is here progressive orientated (contra-clockwise \cup) by the operation order \mathbf{a}, \mathbf{b}.
It has a reversed ordered \mathbf{b}, \mathbf{a} outer product $A=-B=\mathbf{a} \wedge \mathbf{b}$ orientated retrograde from \mathbf{b} to \mathbf{a} around origo O (clockwise U). The bivector concept gives the area quality in a plane with two orientations $(-,+)$ of its quantity $\pm|\mathbf{b} \wedge \mathbf{a}|$.

Because of the anti-commutation rule (5.58) $\mathbf{a} \wedge \mathbf{b}=-\mathbf{b} \wedge \mathbf{a}$ the operation order of the
1 -vectors \mathbf{a} and \mathbf{b} have an impact. First, we let in our intuition the 1 -vector a operate on the space substance, then the 1 -vector \mathbf{b} operates through \wedge on the impact of \mathbf{a} and thus on space, and we have $B=\mathbf{b} \wedge \mathbf{a}$. The vector operator $\mathbf{b} \wedge$ pulls the 1 -vector a through a plane in space, creating a plane-segment $\mathrm{B}=\mathbf{b} \wedge \mathbf{a}$. - We read from left to right, but when we consider 1 -vectors as operator the far right operates first then the next left, and so on successively sequential. ${ }^{218}$
Therefore, the orientation of the rotation direction for the plane segment is positively orientated from \mathbf{a} to \mathbf{b} around the origo O . This is opposite the reading orientation of $\mathbf{b} \wedge \mathbf{a}$, the operation sequence orientation of $\mathbf{b} \wedge(\mathbf{a}())$ from the inner parenthesis with the successive left operation.

[^0]As full fills the same geometric algebra for products as described by the a priori rules in (5.38)-(5.41).
16 Th ecall that scalars commute with vectors and vector products (5.41).
of dime 2-blade for a basis bivector is often used as part of a more general concept of k-blades $\left(a_{k} \wedge \ldots \wedge a_{2} \wedge a_{1}\right)$ as a subspace Here ${ }^{8}$ Refer to written functional principle $f \circ g=f(g)=f g \not \approx g f=g(f)=g \circ f$ for the left operation sequential order of functions.
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark

For quotation reference use: ISBN-13: 978-8797246931

For quotation reference use: ISBN-13: 978-8797246931

[^0]: ${ }^{213}$ These sections are made with great inspiration from the works of David Hestenes [33] and [10] etc.

