Geometric Critique

of Pure

Mathematical Reasoning

Edition

N

 \bigcirc

N

020-

lens

Erfurt

 \supset

ndres

en

Research

on

th

 $\overline{\mathbf{O}}$

2

priori

of

Physics

- II. The Geometry of Physics – 5. The Geometric Plane Concept – 5.2. The Plane Geometric Algebra –

whose real argument $\theta \in \mathbb{R}$ is the angular arc measure, as a \mathbb{R}_{pag-2} quantity. The function value $\cos \theta$ is a real scalar *quality pqg*-0 whose real \mathbb{R}_{pqg-0} *quantity* is the ratio of the orthogonal \perp projection of the 1-vector \mathbf{u}_2 on \mathbf{u}_1 as a colinear (parallel ||) part and the 1-vector \mathbf{u}_1 itself. We form two new 1-vectors by dilation $\mathbf{a} = \alpha \mathbf{u}_1$ and $\mathbf{b} = \beta \mathbf{u}_2$ located in the same plane as shown in Figure 5.8. From this, we form a scalar product between the two vectors

(5.49)
$$\mathbf{a} \cdot \mathbf{b} = \alpha \mathbf{u}_1 \cdot \mathbf{b} = \alpha \mathbf{u}_1 \cdot \beta \mathbf{u}_2 = \alpha \beta \mathbf{u}_1 \cdot \mathbf{u}_2 = |\mathbf{a}| |\mathbf{b}| \mathbf{u}_1 \cdot \mathbf{u}_2 = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
, where $\theta = \langle (\mathbf{a}, \mathbf{b}) \rangle$.

Note that the **b** projection²¹⁰ of the 1-vector **a** has a magnitude $\mathbf{u}_1 \cdot \mathbf{b} = \beta \mathbf{u}_1 \cdot \mathbf{u}_2$, to be scaled by the magnitude $\alpha = |\mathbf{a}|$ to the scalar-product $\alpha\beta\cos\theta$. And the symmetry dictates also that the projection of **a** on the 1-vector **b** has the magnitude $\mathbf{u}_2 \cdot \mathbf{a} = \alpha \mathbf{u}_2 \cdot \mathbf{u}_1$ scaled by the magnitude $\beta = |\mathbf{b}|$ of **b** to give the same scalar-product, thus commutative

(5.50)
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \beta \alpha \cos \theta$$
.

This scalar product indicates the magnitude of the projection of the one 1-vector on the other, multiplied by the magnitude of this other 1-vector, and vice versa, shown in Figure 5.9 $\mathbf{a} \cdot \mathbf{b} = \alpha \mathbf{u}_1 \cdot \mathbf{b} = \beta \mathbf{u}_2 \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{a}$ The commutative algebra symmetry is expressed (5.49).

The scalar-product *quantity* \mathbb{R}_{pag-0} which we intuit as an object of grade-0. That would say an object without geometric extension, but merely just the symmetrical co-linear scalar projection ratio between the two angled 1-vectors (co-sinus) multiplied by their magnitudes.

In the case of a right angle in (5.49) $\perp \sim \sphericalangle(\mathbf{a}, \mathbf{b}) = \theta = \frac{\pi}{2}$, then $\cos \theta = 0$ and thus $\mathbf{a} \cdot \mathbf{b} = 0$ as well as $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0 \in \mathbb{R}_{pqg-0}$. Whenever $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$ we call the two 1-vectors $\mathbf{u}_1, \mathbf{u}_2$ orthogonal, hence the 1-vectors $\mathbf{a} = \alpha \mathbf{u}_1$ and $\mathbf{b} = \beta \mathbf{u}_2$ will be orthogonal too. The inner product $\mathbf{a} \cdot \mathbf{b} = 0$ means that the two orthogonal 1-vectors are independent in their pag-1 quality expressed as **no** pag-0 scalar cosine quantity in their plane relation. For geometric 1-vectors,²¹¹ the inner product is a real scalar \mathbb{R} .

The inner product commute and is therefore symmetrical between the 1-vectors $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

The fact, that the scalar product commute between 1-vectors in a plane means, that it is independent of the space outside the plane, therefore the designation as inner product, in accordance with (5.45)-(5.47).

For an angle with $\sphericalangle(\mathbf{a}, \mathbf{b}) = \theta = 0$, we have $\cos \theta = 1 \in \mathbb{R}$ and the two 1-vectors are co-linear, and the scalar product is the same as the product of the two magnitudes $|\mathbf{a}||\mathbf{b}|$.

This is comparable to § 4.4.4.1, where $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \iff |\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}} = \sqrt{(\mathbf{a})^2}$ is the metric of 1-vectors through this quadratic form.

For 1-vectors in the Euclidean plane, the auto scalar product is never negative $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$.

²¹⁰ For the phenomenological understanding of the orthogo	onal projection of the	-vector b on a it should be noted that	t the projection	
is a 1-vector $P_{\mathbf{a}}(\mathbf{b}) = (\mathbf{u}_1 \cdot \mathbf{b})\mathbf{u}_1 = (\hat{\mathbf{a}} \cdot \mathbf{b})\hat{\mathbf{a}} = \left(\frac{\mathbf{a}}{ \mathbf{a} } \cdot \mathbf{b}\right)\frac{\mathbf{a}}{ \mathbf{a} } = \frac{\mathbf{a}}{ \mathbf{a} }$	$\frac{\mathbf{b}}{\mathbf{a}^2} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$, in the <i>direct</i>	$\mathbf{bon} \mathbf{u}_1 = \hat{\mathbf{a}} = \frac{\mathbf{a}}{ \mathbf{a} }.$		
²¹¹ In a generalised vector space, the inner product of two vectors of the same grades is also a scalar. As an example, the use of complex vector space $\psi, \varphi \in (V, \mathbb{C})$, where we often write the inner product as $\langle \psi, \varphi \rangle = \langle \psi \varphi \rangle = \psi \cdot \varphi$				
© Jens Erfurt Andresen, M.Sc. Physics. Denmark	_ 164 _	Research on the a priori of Physics –	December 2022	

From the difference between two 1-vectors we can deduct the inner product (see Figure 5.7) $\mathbf{d} = \mathbf{a} - \mathbf{b} \Rightarrow$

$$\mathbf{d} \cdot \mathbf{d} = |\mathbf{d}|^2 = |\mathbf{a} - \mathbf{b}|^2 = (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} - \mathbf{b}) - \mathbf{b} \cdot (\mathbf{a} - \mathbf{b})$$

(5.52)
$$\Rightarrow \mathbf{a} \cdot \mathbf{b} = \frac{1}{2} (|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2)$$

And from the sum of two 1-vectors $\mathbf{c} = \mathbf{a} + \mathbf{b}$ we obtained the inner scalar product $\mathbf{a} \cdot \mathbf{b}$ as $\mathbf{c} = \mathbf{a} + \mathbf{b} \Rightarrow$

$$\mathbf{c} \cdot \mathbf{c} = |\mathbf{c}|^2 = \underline{|\mathbf{a} + \mathbf{b}|^2} = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot (\mathbf{a$$

(5.53)
$$\Rightarrow \mathbf{a} \cdot \mathbf{b} = \frac{1}{2} (|\mathbf{a} + \mathbf{b}|^2 - |\mathbf{a}|^2 - |\mathbf{b}|^2)$$

From the quadratic form (5.46) we see that the inner product is

(5.54)
$$\mathbf{a} \cdot \mathbf{b} \coloneqq \frac{1}{2}(\mathbf{a}\mathbf{b} + \mathbf{b}\mathbf{a}) = \frac{1}{2}((\mathbf{a} + \mathbf{b})^2 - \mathbf{a}^2 - \mathbf{b}^2) = \frac{1}{2}(\mathbf{a}^2 + \mathbf{b}^2 - (\mathbf{a} - \mathbf{b})^2) = \frac{1}{4}((\mathbf{a} + \mathbf{b})^2 - (\mathbf{a} - \mathbf{b})^2)$$

Two geometric 1-vectors together form an inner scalar product. From the ordinary vector

geometric 1-vectors together form an inner scalar product. From the ordinary geometry, we repeat the simple formula (5.49)

(5.55)
$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \in \mathbb{R}$$
, where $\theta = \sphericalangle(\mathbf{a}, \mathbf{b}) \in \mathbb{R}$

The scalar product forms a pure scalar *quantity* measure \mathbb{R}_{pqg-0} for the symmetric colinear internal relations between the two 1-vectors. In general, the scalar is a measure of a colinear internal dependency in a physical *entity* expressed between two mutual related 1-vectors.

In addition to this scalar measure, the anti-symmetry between the two geometric vectors from (5.44) forms a plane concept as a *primary quality of second grade (pqg-2)*. This plane substance we intuit as an objective surface that we see from its outside, therefor the anti-symmetry of the product is called an *outer quality*.

5.2.4. The Geometric Product

We return to the general product of geometric vectors \mathbf{a} and \mathbf{b} from (5.44)

(5.56)
$$\mathbf{ab} = \frac{1}{2}(\mathbf{ab} + \mathbf{ba}) + \frac{1}{2}(\mathbf{ab} - \mathbf{ba}).$$

We have seen (5.46)-(5.54) that the first part is a symmetrical commuting inner product

(5.57)
$$\mathbf{a} \cdot \mathbf{b} = \frac{1}{2}(\mathbf{a}\mathbf{b} + \mathbf{b}\mathbf{a})$$

This symmetrical *inner product* has also been called the *interior product*. For the last antisymmetric part, we will write with a wedge angle icon \wedge between the two vectors

(5.58)
$$\mathbf{a}\wedge\mathbf{b} = \frac{1}{2}(\mathbf{a}\mathbf{b}-\mathbf{b}\mathbf{a}) = -\frac{1}{2}(\mathbf{b}\mathbf{a}-\mathbf{a}\mathbf{b}) = -$$

This part of the product is called the anti-commuting *outer* product (or *the exterior product*). In this way, the geometric product of 1-vectors can be written as

- 165

$$(5.59) ab = a \cdot b + a \wedge b$$

This is an example of a so-called 2-*multivector*,²¹² or just a 2-vector.

²¹² 2-multivector, 2 stands for the simple product polynomials of two 1-vectors and scalars, e.g., just **ab** or γ **ab**+ β **c**+ α .

Jens Erfurt Andresen, M.Sc. NBI-UCPH,	
---------------------------------------	--

For quotation reference use: ISBN-13: 978-8797246931

Figure 5.9 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ is commutative.

- We prescribe the commutative algebraic conditions for the inner product in a Euclidean plane The commutative law.
 - the scalar multiplicative law.
 - The distributive low over addition.
 - (iv) $\mathbf{a} \cdot \mathbf{a} > 0$ \forall $\mathbf{a} = \mathbf{0} \Rightarrow \mathbf{a} \cdot \mathbf{a} = \mathbf{0}$, Euclidean metric norm.

 $(\mathbf{a}-\mathbf{b}) = \mathbf{a} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b}$

 $(\mathbf{a}+\mathbf{b}) = \mathbf{a}\cdot\mathbf{a}+\mathbf{a}\cdot\mathbf{b}+\mathbf{b}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b} = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a}\cdot\mathbf{b}$

R.

(is a real scalar).

b∧a

(is a bivector).

Volume I. - Edition 2 - 2020-22, - Revision 6,