Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931
whose real argument $\theta \in \mathbb{R}$ is the angular arc measure, as a $\mathbb{R}_{\text {pqg-2 }}$ quantity. The function value $\cos \theta$ is a real scalar quality pqg-0 whose real $\mathbb{R}_{\mathrm{pqg}-0}$ quantity is the ratio of the orthogonal \perp projection of the 1 -vector \mathbf{u}_{2} on \mathbf{u}_{1} as a colinear (parallel $\|$) part and the 1-vector \mathbf{u}_{1} itself. We form two new 1 -vectors by dilation $\mathrm{a}=\alpha \mathbf{u}_{1}$ and $\mathbf{b}=\beta \mathbf{u}_{2}$ located in the same plane as shown in Figure 5.8. From this, we form a scalar product between the two vectors
$\mathbf{a} \cdot \mathbf{b}=\alpha \mathbf{u}_{1} \cdot \mathbf{b}=\alpha \mathbf{u}_{1} \cdot \beta \mathbf{u}_{2}=\alpha \beta \mathbf{u}_{1} \cdot \mathbf{u}_{2}=|\mathrm{a}||\mathrm{b}| \mathbf{u}_{1} \cdot \mathbf{u}_{2}=|\mathbf{a}||\mathrm{b}| \cos \theta$, where $\theta=\Varangle(\mathbf{a}, \mathbf{b})$
Note that the \mathbf{b} projection ${ }^{210}$ of the 1 -vector \mathbf{a} has a magnitude $\mathbf{u}_{1} \cdot \mathbf{b}=\beta \mathbf{u}_{1} \cdot \mathbf{u}_{2}$,
to be scaled by the magnitude $\alpha=|\mathrm{a}|$ to the scalar-product $\alpha \beta \cos \theta$. And the symmetry dictates also that the projection of \mathbf{a} on the 1-vector \mathbf{b} has the magnitude $\mathbf{u}_{2} \cdot \mathbf{a}=\alpha \mathbf{u}_{2} \cdot \mathbf{u}_{1}$ scaled by the magnitude $\beta=|\mathrm{b}|$ of b to give the same scalar-product, thus commutative

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}=\beta \alpha \cos \theta
$$

This scalar product indicates the magnitude of the projection of the one 1 -vector on the other, multiplied by the magnitude of this other
1 -vector, and vice versa, shown in Figure $5.9 \mathbf{a} \cdot \mathbf{b}=\alpha \mathbf{u}_{1} \cdot \mathbf{b}=\beta \mathbf{u}_{2} \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{a}$ The commutative algebra symmetry is expressed (5.49)
The scalar-product quantity $\mathbb{R}_{\text {pqg-0 }}$ which we intuit as an object of
grade-0. That would say an object without geometric extension, but merely just the symmetrical co-linear scalar projection ratio between the two

Figure $5.9 \mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$ is commutative.

In the case of a right angle in (5.49) $\perp \sim \Varangle(\mathbf{a}, \mathbf{b})=\theta=\frac{\pi}{2}$, then $\cos \theta=0$ and thus $\mathbf{a} \cdot \mathbf{b}=0$ as well as $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0 \in \mathbb{R}_{\text {pqg-0 }}$. Whenever $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0$ we call the two 1 -vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ orthogonal, hence the 1 -vectors $\mathbf{a}=\alpha \mathbf{u}_{1}$ and $\mathbf{b}=\beta \mathbf{u}_{2}$ will be orthogonal too. The inner product $\mathbf{a} \cdot \mathbf{b}=0$ means that the two orthogonal 1 -vectors are independent in their pqg-1 quality expressed as no pqg-0 scalar cosine quantity in their plane relation.
For geometric 1 -vectors, ${ }^{211}$ the inner product is a real scalar \mathbb{R}.
The inner product commute and is therefore symmetrical between the 1 -vectors $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
The fact, that the scalar product commute between 1-vectors in a plane means,
that it is independent of the space outside the plane, therefore the designation as inner product, in accordance with (5.45)-(5.47).
For an angle with $\Varangle(\mathbf{a}, \mathbf{b})=\theta=0$, we have $\cos \theta=1 \in \mathbb{R}$ and the two 1 -vectors are co-linear, and the scalar product is the same as the product of the two magnitudes $|\mathbf{a}||\mathbf{b}|$.
This is comparable to §4.4.4.1, where $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2} \quad \Leftrightarrow \quad|\mathbf{a}|=\sqrt{\mathbf{a} \cdot \mathbf{a}}=\sqrt{(\mathbf{a})^{2}}$ is
the metric of 1 -vectors through this quadratic form.
For 1 -vectors in the Euclidean plane, the auto scalar product is never negative $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2} \geq 0$
${ }^{10}$ For the phenomenological understanding of the orthogonal projection of the 1-vector \mathbf{b} on \mathbf{a} it should be noted that the projection is a 1 -vector $P_{\mathrm{a}}(\mathbf{b})=\left(\mathbf{u}_{1} \cdot \mathbf{b}\right) \mathbf{u}_{1}=(\hat{\mathbf{a}} \cdot \mathbf{b}) \hat{\mathbf{a}}=\left(\frac{\mathrm{a}}{|a|} \cdot \mathrm{b}\right) \frac{\mathrm{a}}{|\mathrm{a}|}=\frac{\mathrm{a} \cdot \mathrm{b}}{|\mathrm{a}|^{2}} \frac{a \cdot \mathrm{a} \cdot \mathrm{b}}{\mathrm{a} \cdot \mathrm{a}} \mathrm{a}$, in the direction $\mathbf{u}_{1}=\hat{\mathbf{a}}=\frac{\mathrm{a}}{|\mathrm{a}|}$.
${ }^{11}$ In a generalised vector space, the inner product of two vectors of the same grades is also a scalar. As an example, the use of complex vector space $\psi, \varphi \in(V, \mathbb{C})$, where we often write the inner product as $\langle\psi, \varphi\rangle=\langle\psi \mid \varphi\rangle=\psi \cdot \varphi$
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark

Research on the a priori of Physics December 2022

For quotation reference use: ISBN-13: 978-8797246931

5.2.3. The Inner Product Algebra

We prescribe the commutative algebraic conditions for the inner product in a Euclidean plane
(5.51)
$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta \in \mathbb{R}, \quad$ where $\theta=\Varangle(\mathbf{a}, \mathbf{b}) \in \mathbb{R}$
The scalar product forms a pure scalar quantity measure $\mathbb{R}_{\mathrm{pqg}-0}$ for the symmetric colinear interna relations between the two 1 -vectors. In general, the scalar is a measure of a colinear internal dependency in a physical entity expressed between two mutual related 1 -vectors.
In addition to this scalar measure, the anti-symmetry between the two geometric vectors from (5.44) forms a plane concept as a primary quality of second grade (pqg-2).

This plane substance we intuit as an objective surface that we see from its outside, therefor the anti-symmetry of the product is called an outer quality

5.2.4. The Geometric Product

We return to the general product of geometric vectors \mathbf{a} and \mathbf{b} from (5.44)

For the last antisymmetric part, we will write with a wedge angle icon \wedge between the two vectors
$\mathbf{a} \wedge \mathbf{b}=\frac{1}{2}(\mathbf{a b}-\mathbf{b a})=-\frac{1}{2}(\mathbf{b a}-\mathbf{a b})=-\mathbf{b} \wedge \mathbf{a}$
(is a bivector).
This part of the product is called the anti-commuting outer product (or the exterior product). In this way, the geometric product of 1 -vectors can be written as
$\mathbf{a b}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}$
This is an example of a so-called 2-multivector, ${ }^{212}$ or just a 2 -vector
${ }^{212} 2$-multivector, 2 stands for the simple product polynomials of two 1 -vectors and scalars, e.g., just $\mathbf{a b}$ or $\gamma \mathbf{a b}+\beta \mathbf{c}+\alpha$. © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-165-\quad$ Volume I, - Edition 2-2020-22, - Revision 6,

For quotation reference use: ISBN-13: 978-8797246931

