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5.2.1.5. Clifford Algebra 
We look at a vector space  over a field   that is equipped with a quadratic form  

(5.36) = ( )     for  , 
where  =   is an algebra product, and  is the multiplicative identity in the algebra. 
This is called a Clifford algebra and we designate it by  ( , Q). 
For geometric 1-vectors the quadratic forms are a real function, that is, 
the linear vector space -   is over the real numbers  -  

(5.37) = ( )  =   | |     for   
In practice,208  the multiplicative signatures are  = 1,0, 1. 
We define the magnitude as | | = | |½,  or in general | | = | |½  
In Euclidean space , we apply  =1 , just as in Euclidean geometry, i.e., = |vv|2 , 
where the norm | |= | |  gives the magnitude of . It is well known, that the natural geometric 
plane and the natural 3-dimensional space of physics is Euclidean with the signature =1. 

5.2.1.6. The Combined Linear Space 
The plane subjects, intuit as objects ( , ) ,    for  , are given by two quantities: 
First the magnitude as a pure scalar, e.g.:   |( , )| - , and second the angle -

  
(illustrated in Figure 5.3 and Figure 5.4), or the perpendicular direction (as the tangent illustrated 
in Figure 5.6). These can be combined in two separate ways: 
1. as a direct sum  ~ - - = - - , as (5.23) and 
2. as a direct product - - = - -  ~ - - - , as below (5.59). 
The first combination is the addition of two linearly independent 1-vectors. In this, 
the angle is transcendental implicitly given by necessity, possibly by a Cartesian right angle. 
The second combination is formed by the product of two 1-vectors. 
In the tradition, we usually have for the complex scalars an associated abstract plane. Further  
in this tradition, we usually have =   with the complex scalars for the plane. 
The first combination is then the addition of a complex real part Re and imaginary parts Im. 
The second combination is a product of a real number  - , and a complex unitary function 

,  of another real number  - .  – We will examine this geometric further below. – 
As is well known, and previously described in Section 4.1.3 - § 4.1.3.3, we know in our intuition 
that the geometric complex vector space ( , )~( , , ) is synonymous with a real linear space 
( , )~( , ), =2 ,  therefore, we intuit a geometric algebra of finite dimensional real 
vector space ( , )~( , ),  with a quadratic form : , which is a so-called real field  
Clifford algebra  ( , ). – A complex field structure will camouflage the geometric foundation. 

5.2.2. The Geometric Algebra with Direct Product 
In addition to the additive algebra for vectors, we ethical expand the algebra with rules for the 
multiplication of vectors. For the product of such vectors , ,  from the vector space   
we shall apply the fundamental multiplication rules 

(5.38) ( ) = ( ) ,  the associative law for products, 
(5.39) ( + ) = + , the product is left distributive for addition, 
(5.40) ( + ) = + , the product is right distributive for addition, 
(5.41) =   = = ,    , the commutative law for scalar multiplication 
(5.42) = = = | | = ±| |  , scalar metric (contraction). (If = 0 = 0) 

 
208 The multiplicative signature  = 1,0, 1  has its cause in permutations. An example of a negative signature is the complex 

numbers where ( ) = 1  and something similar we see in the Minkowski metric.  
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Vectors that meet this multiplicative algebra we call geometric vectors, e.g.  in which the 
product of geometric vectors is called a geometric product. We expand this concept with sums of 
geometric products which we call multi-vector of the form  = + …   etc. 
Generally, we use the typography in Italic capitals for geometric207 multi-vectors e.g.,  , , … 
and further  = + + ff + g + .  (Exceptions are 1-vectors  and bivectors .) 
For multi-vectors, we apply the geometric algebra (5.38)-(5.42), which is not commutative by 
multiplication, but in all meets the same additive algebra as vectors (5.11)-(5.21). 
This algebra is called a (Clifford) geometric algebra named ( )  over the vector space . 
Comment, for the associative product ( )= , we get a scalar  multiplied by a vector .  
The squared 1-vector objects , …    are pure scalar quantities  - ,  see  § 4.4.4.1. 
If the vector  is not colinear (not parallel) with  the product  is not just such a scalar.  
Using the scalar  = 1  from (5.41)  as a factor for the addition to get subtraction, we can 
judge a priori, that the auto-subtraction annihilates (disappears) 

(5.43) + ( 1) =   = 0. 
It helps us to dissolve product  by inserting the reverse product  .  
By this, we split and expand the geometric product in a symmetrical and an anti-symmetrical part 

(5.44)   =   1
2 ( + ) + 1

2 ( ). Reason is   = 1
2 ( + + ). 

  product  symmetric inner   anti-symmetric outer 

 The last term in brackets has an impact by an external exchange of the two vectors   and . 
 The first term in brackets is in its symmetry independent by external exchange  , 

 hence, a commutation does not influence the inner part of the product. 
We are setting   =    and   =    as well as   = ( + ),     = ( ),    
just as in the bilinear form (5.28)  (5.31) and (5.32),  we get the split (5.33)   = +  

5.2.2.2. The Inner Symmetric Product of Geometric Vectors 
Two geometric 1-vectors are generating a plane. We, therefore, turn to the link between two 
vectors. Similar to the bilinear form we are now introducing the general vector product 

  for  ,   and claim the above algebra ( ) ( , Q) for such geometric product of 
vectors. We start from the quadratic form (5.37) for the sum of two vectors 

(5.45) ( + ) = ( + ) = ( + )( + ) = + + + =     + + +  
Using the symmetrical bilinear form (5.31),  we define the inner product 

(5.46) ,  ( + )  =    (( + ) )  =   ( + ) ( ) ( ) , 

as a symmetrical bilinear form  ~ ( , )  associated with the quadratic form . 
The inner product commute according to the symmetrical definition 

(5.47) ,  ( + )  =   ( + )   = , =  

5.2.2.3. The Scalar Product 
In § 5.1.1.5 as shown in Figure 5.2, we have two 1-vectors = OA and  
each generating half lines that intersect as an angle from their origo O. 
We rename  to = , so the u's stand for free unitary directions, 
that is  | | = | | = 1. 
The two 1-vectors  span a plane from O. 
Historically we have created the real scalar function209 cosine 

(5.48) = cos     , 

 
209 Co-sinus means together by the arc or under the arc (Greek: sinus). In practice, the projection is down on the ground line. 

Figure 5.8 The scalar product. 
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