Restricted to brief peruse for research，reviews，or scholarly analysis，© with required quotation reference：ISBN－13：978－8797246931

5．2．The Plane Geometric Algebra

5．2．1．Addition of 1－vectors in the Plan

Now that we have an intuition of the plane angle concept，we will look at the addition of two 1 －vectors that form an angle to each other． As an object for us，the addition is displayed for intuition in Figure 5．7．
First the sum
$\mathbf{c}=\mathbf{a}+\mathbf{b}$,

Figure 5．7 Vector sum and difference．
then the additive difference between the 1 －vectors
$\mathbf{d}=\mathbf{a}-\mathbf{b}=\mathbf{a}+(-1) \mathbf{b} . \quad$ Where alternatively $\mathbf{a}=\mathbf{b}+\mathbf{d}$
The subtraction of the 1 －vector \mathbf{b} is the addition of the inverse orientation obtained by the scalar factor (-1) ．
The fact that three 1 －vectors added together，do not necessarily exist in the same plane，we need to successively select a new plane for an angle every time we add one 1 －vector to a sum of 1 －vectors． Generally，geometric 1－vectors satisfy the general additive algebra of vector spaces．

5．2．1．2．The Additive Algebra for Vector Spaces of Geometric Substance
In section 4．1．1．1 we defined the general rules（4．1）－（4．11）for an arbitrary linear vector space over a scalar field \mathbb{K} ．For the natural geometric vector space for physics，we will limit ourselves to using only the real numbers \mathbb{R} as the scalar field for the vector space $(V, \mathbb{R}) \sim V$ with the additive identical neutral element $\mathbf{0} \in V$ called the zero－vector．
We use bold lowercase Latin letters to denote the physical（objective）geometric 1－vectors and rewrite the additive algebra of this linear vector space $(V, \mathbb{R}) \sim V$
For arbitrary geometric elements $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$ we apply the following algebraic rules

$$
\mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c}, \quad \text { the associative law for addition. }
$$

$\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}, \quad$ the commutative law for addition．
（5．13）
$\exists \mathbf{0} \in \mathrm{V}: \mathbf{a}+\mathbf{0}=\mathbf{a}$ for $\forall \mathbf{a} \in \mathrm{V}$ ，
the identical element for addition，the zero－vector $\mathbf{0}$
（5．14）$\forall \mathbf{a} \in \mathrm{V}, \exists-\mathbf{a} \in \mathrm{V} \Rightarrow \mathbf{a}+(-\mathbf{a})=\mathbf{0}$ ，where $-\mathbf{a}$ is the additive inverse orientation to \mathbf{a} ．
（5．15）$\alpha(\beta \mathbf{b})=(\alpha \beta) \mathbf{b}$ for $\alpha, \beta \in \mathbb{R}, \quad$ the associative scalar field multiplication
（5．16） $1 \mathbf{a}=\mathbf{a}$ ，where $1 \in \mathbb{R}$ ，the multiplicative identical neutral scalar $1 \in \mathbb{R}$ ．
（5．17）$\quad \lambda(\mathbf{a}+\mathbf{b})=\lambda \mathbf{a}+\lambda \mathbf{b}, \quad \lambda \in \mathbb{R}, \quad$ distributive scalar multiplication for vector addition．
（5．18）$\quad(\alpha+\beta) \mathbf{c}=\alpha \mathbf{c}+\beta \mathbf{c}, \quad$ distributive scalar multiplication for scalar addition．
（5．19）$\quad \lambda \mathbf{a}=\mathbf{a} \lambda, \quad \lambda \in \mathbb{R} \quad$ commutative multiplication by the scalar field．
（5．20）Subtraction of a vector is defined as
Division of a vector with a scalar is defined as

$$
\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})
$$

This general linear algebra for linear spaces also applies to geometric 1－vectors．Multiplication with real scalars of 1 －vectors is a primary quality of first grade（pqg－1）where the physical quantity $\left[\mathbb{R}_{+\mathrm{pqg}-1}^{1}\right]$ is obtained by multiplication with a scalar $\lambda \in \mathbb{R}$ ．
The addition of two 1 －vectors \mathbf{a} and \mathbf{b} in the same plane provides a new
1 －vector $\mathbf{c}=\mathbf{a}+\mathbf{b}$ also of the quality pqg－1，even when they form an angle with each other and hence are linearly independent．
It is left to the reader by the intuition of Figure 5.7 to confirm the a priori judgment
$\alpha \mathbf{a}+\beta \mathbf{b}=0 \Rightarrow \alpha=\beta=0$.
The plane angle between the two linearly independent 1－vectors \mathbf{a} and \mathbf{b} forms a mutual relationship forming a primary quality of second grade（pqg－2）．

C Jens Erfurt Andresen，M．Sc．Physics，Denmark
160
Research on the a priori of Physics

（5．31）

Using the quadratic form $Q(\mathbf{v})$ in（5．31）and（5．32）we see convergence with the symmetrical form and the exclusion of the anti－symmetric part． $\mathbf{v} \rightarrow Q(\mathbf{v})=B(\mathbf{v}, \mathbf{v})$ ． Generally，for a quadratic form，we from（5．26）apply

$$
Q(\lambda \mathbf{v})=\lambda^{2} Q(\mathbf{v}), \text { for } \forall \mathbf{v} \in V, \forall \lambda \in \mathbb{K}
$$

© Jens Erfurt Andresen，M．Sc．NBI－UCPH，$\quad-161-\quad$ Volume I，－Edition 2－2020－22，－Revision 6，\quad December 2022

For quotation reference use：ISBN－13：978－8797246931
For quotation reference use：ISBN－13：978－8797246931

