Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

- Two angles may be compared relative to each other, but the normalization has its cause in radius. E.g., the scalar for a straight angle is in all cases absolute π (or 180°).
- The absolute norm for the idea of a unit circle is its radius.

Whence, phase angles are absolute autonomous in a cyclic development.
5.1.1.8. Addition of angular quantities

We have seen angle quantity $\left[\mathbb{R}_{\text {pqg-2 }}\right]$ represented by real numbers $\phi \in \mathbb{R}_{\text {pqg-2 }}$.
However, the angle pqg-2 quality is cyclical singular the same as the arc of the unit circle centred at the angle origo O . The three arcs shown in Figure 5.1,o. are added to one turn in the circle $\angle \mathrm{AOB}+\angle \mathrm{BOC}+\angle \mathrm{COA}=\mathrm{OABC}=\mathrm{O}$,
whose real scalar quantities are added to $\Varangle \mathrm{AOB}+\Varangle \mathrm{BOC}+\Varangle \mathrm{COA}=\Varangle \mathrm{O}=2 \pi$,
and the subtend for planar triangles is $\Varangle \mathrm{CAB}+\Varangle \mathrm{ABC}+\Varangle \mathrm{BCA}=\Varangle \triangle \mathrm{ABC}=\pi$.
The a priory π per se for the plane idea. The addition of angles in the same plane is absolute. The real scalar of the angular measure is periodic modulo 2π, as it represents an angle around the circle, as shown in Figure 5.3.
The secondary point P of the angle is represented by $\phi \in \mathbb{R}$ in this way

$$
\phi \rightarrow \mathrm{P}(\phi)=\mathrm{P}\left(\phi_{0}\right) \text { for } \forall \phi=\phi_{0}+2 \pi n \text {, where } \quad \Varangle \mathrm{AOP}=\phi_{0} \in[0,2 \pi[\wedge \forall n \in \mathbb{Z}
$$

From the angle primary object 1-vector $\mathbf{e}_{1}=\overrightarrow{O A}$ (from starting points O and A) the scalar $\phi \in \mathbb{R}_{\mathrm{pqg}-2}$ quantity designates a point P on the circle O , as we remember that the circle-specific pqg-2 quality is given in the plane given by OABC in our intuition. Since the real numbers are additive the angle quantity of compound angles will be the sum of the individual angular quantities in one and the same plane of the angular direction quality.
5.1.1.9. The Angular Quantity as a Sector Area

Together with the unit circle, two different unit 1-vectors, $\mathbf{u}_{1} \neq \mathbf{u}_{2}$, where $\left|\mathbf{u}_{1}\right|=\left|\mathbf{u}_{2}\right|=1$,
forming an angle $\angle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$, whose quantity is $\operatorname{arc}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\operatorname{arc}_{\theta}=\theta=\Varangle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$
an arcus-measure of the unit circle. As known for the unit circle $r=1$,
the circumference is $2 \pi r=2 \pi$, and the area is $\pi r^{2}=\pi 1^{2}=\pi$.
Angular sector area starting from 1-vector \mathbf{u}_{1} to \mathbf{u}_{2} relate to the total area for the unit circle as the ratio of the angle of the arc to the entire circumference.
This ratio is multiplied by the entire area of the circle

$$
A_{\angle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)}=A_{\theta}=\frac{\operatorname{arc}_{\theta}}{2 \pi} \pi 1^{2}=\frac{\theta}{2 \pi} \pi=\frac{1}{2} \theta . \quad \text { Thus, }
$$

the angular quantity is a double measure of the sector area

$$
A_{\angle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)}=\frac{\theta}{2}=\frac{1}{2} \Varangle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right), \quad \text { see Figure } 5.5
$$

We see that the intuition of angular quantity $\left[\mathbb{R}_{\mathrm{pqg}-2}\right]$ can

Figure 5.5 The sector area in the unit circle as a half measure for the angular quantity.

By this, we deduced that both the angle concept and
the area concept are primary qualities of second grade (pqg-2).
Two linearly independent 1 -vectors form an angle, i.e., two 1-vectors $\mathbf{a} \neq \mathbf{b}$ form an angle $\angle(\mathbf{a}, \mathbf{b})$, where $\Varangle(\mathbf{a}, \mathbf{b}) \neq n \pi$ for $\forall n \in \mathbb{Z}$, when $\mathbf{a} \neq \lambda \mathbf{b}$, for $\forall \lambda \in \mathbb{R}$.
When $\hat{\mathbf{a}} \| \hat{\mathbf{b}}$ area $A_{\angle(\hat{\mathbf{a}}, \hat{\mathbf{b}})}$ is a priori undefined as that pure pqg-1 quality

For quotation reference use: ISBN-13: 978-8797246931

