

5.1.1.4. The Concept of Different Angles

A category: 1. Angles may be the same or different. 2. An individual angle can be divided into several angles, and 3. Different angles can be combined into one angle. These are the three criteria for a quantity category by Immanuel Kant. Then we can intuit the concept of a quality called angles in space \mathfrak{F} as a category of angular quantity in physics.
5.1.1.5. The Concept Circular Arc of Angle

An angle β is formed by two half-line rays r_{1} and r_{2} with different directions from a point O . Given a point A on r_{1} that the 1 -vector $\mathbf{e}_{1}=\overrightarrow{\mathrm{OA}}$ represent the primary direction that we assign the magnitude $\left|\mathbf{e}_{1}\right|=|\overrightarrow{\mathrm{OA}}|=1 \in \mathbb{R}$. This magnitude is selected as the radius of a circle with a center in O with the ray r_{1} intersecting the circle at point A , and the ray r_{2} intersecting at point B , See Figure 5.2. This circle is called a unit circle. We assign the angle
 a scalar quantity corresponding to the unit circle $\operatorname{arc}_{A B}$,

Figure 5.2 The circle of an angle. $\beta_{1,2}=\operatorname{arc}_{\mathrm{AB}}=\frac{|\widetilde{\mathrm{AB}}|}{|\overrightarrow{\mathrm{OA}}|}=|\overline{\mathrm{AB}}|>|\mathrm{AB}|>0$

Figure 5.3 The angular ($\overrightarrow{\mathrm{arc}}$) in the unit circle. r_{1} of the primary given directional 1 -vecto
 We now look specifically at the angle of object $\angle A O B$ in space $(5$ We claim that the lines OA and OB are not parallel and intersect each other at point O . The negation non-parallel opens Figure 5.4 Angular direction expressed the definition of a quality we call the direction of an angle. sequentially as $\mathrm{O}, \mathrm{A}, \mathrm{B} \sim \mathrm{A}, \mathrm{B}, \mathrm{O} \sim \mathrm{B}, \mathrm{O}, \mathrm{A}$ In Figure 5.4 the direction from the point O through the 1 -vector $\mathbf{e}_{1}=\overrightarrow{O A}$ over the point A through the $\operatorname{arc}_{A B}$ to point B (designated by the 1-vector $\mathbf{e}_{2}=\overrightarrow{O B}$, Figure 5.3), where the cyclic orientation of direction is indicated as the sequences $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{O} \sim \mathrm{A}, \mathrm{B}, \mathrm{O}, \mathrm{A} \sim \mathrm{B}, \mathrm{O}, \mathrm{A}, \mathrm{B}$. In postulate 5.1 .1 .2 ,k. the direction is given by the triangle $\triangle A B C$, etc. With center O This triangle may be circumscribed by a circle, as shown in Figure 5.1,n. and o. This circle defines a rotation around the center O , this circle rotation direction is determined by the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, in this drawing progressive \cup anti-clockwise in orientation. The angular direction $\Varangle 0=\Varangle A O B$ is defined as the same as in circle rotation $\cup A B C$ shown in Figure 5.1,o., that is, from A to B as seen from the center O around the circle $O A B C$, note the arrows in Figure 5.4. $\nwarrow, \swarrow, \rightarrow$. The possibility of the concept of an angular direction $\Varangle 0=\Varangle A O B$ is a category called: A primary quality of second grade (pqg-2). Angles shape the plane substance \mathfrak{P} idea

- The categorial pqg-2 quality has as consequences the possibility of the angular objects in Figure 5.2, Figure 5.3, Figure 5.4 and all other angular objects are to be shown for intuition.
C. Jens Erfurt Andresen, M.Sc. Physics, Denmark

156 -
Research on the a priori of Physics
5.1.1.7. The Quantity of an Angle

Angles have different sizes, e.g., an acute, obtuse, or right angle. (E I.De.21.) The angular relative quantity is defined from a circular arc measured by the radius defined as 1 . The scalar radian arc measure (5.3) $\beta=\operatorname{arc}_{\mathrm{AB}}=|\overline{\mathrm{AB}}| \in \mathbb{R}_{+}$is formed by the concept of the positive real numbers from the arc length $|\overline{\mathrm{AB}}|\left[\right.$ radius $\left.^{-1}\right]$ of the $\operatorname{arc} \overline{\mathrm{AB}}$.
The quantitative order of the real numbers is coordinated with the order of points along the arc, thus also a quantitative order of points. In this way the concept of the real numbers \mathbb{R} is associated with the angle concept. Like the straight linear ray had a parametric equation in Section 4.4.2.8, the relative radian arc we endow with a real scalar parameter representation, that in its whole constitute the unit circle, as shown in Figure 5.3
$O A B C=\left\{\forall P| | \overline{\mathrm{AP}}\left|=\operatorname{arc}_{\mathrm{AP}}=\phi\right| \mathrm{OA}|=\phi| \mathbf{e}_{1} \mid=\phi \in \mathbb{R}_{+}\right.$, radius $\left.=|\mathrm{OP}|=|\mathrm{OA}|=\left|\mathbf{e}_{1}\right|=1,\left(\exists \mathrm{P}_{\mathrm{B}}=\mathrm{B}\right)\right\}$
This parameter ϕ represents real scalar angle quantity and produces thus the development of the angle $\angle A O P$ as a linear function of the parameter scalar $\phi \in \mathbb{R}$.
All points $P(\phi)$ develops the circle $P(\phi) \in O A B C \subset \gamma_{A B C}$. This development is called an angle of rotation or just a circle rotation in the plane $\gamma_{A B C}=\gamma_{A O B}$ roundabout the point O . The scalar quantity of an angle $\angle A O B$ is expressed as $\Varangle A O B=\beta \in \mathbb{R}$.
The direction of the angle $\Varangle A O B$ is considered positive orientated here in the alphabetic order $0, \triangle \mathrm{AB} \rightarrow \Varangle \mathrm{AOB}=\beta=\operatorname{arc}_{\mathrm{AB}}=|\widehat{\mathrm{AB}}| \geq 0$, around the center O . The reverse order is considered as a negative orientation $\Varangle \mathrm{BOA}=\operatorname{arc}_{\mathrm{BA}}=-\operatorname{arc}_{\mathrm{AB}}=-|\overline{\mathrm{AB}}| \leq 0$, that is, $\Varangle \mathrm{AOB}=-\Varangle \mathrm{BOA}$ for a scalar associated with the relative angular arc.
The pqg-2 direction quality of the angular concept in a plane has the relative real quantity $\beta \in \mathbb{R}$ where the sign represents the orientation of the rotation direction.
For the spatial direction of an angle object $\angle A O B$ we have the reverse orientation
$(\Varangle \mathrm{AOB})^{\dagger}=\Varangle \mathrm{BOA}$. Cyclic we expressed this iconic as ${v^{\dagger}}^{\dagger}=\circlearrowright$.

- Looking at the face of a clock, we know immediately which way the hands shall move, but when we imagine we see the clock face from the back (seen through a transparent face) we know that the display hands move the same way around, but the rotation orientation is reversed seen from our alternative viewpoint behind the clock. Is this the so-called 'time reversal' mirror? The quality of angular direction has fundamentally only relative meaning in forming its plane The relationship between line segments $O A$ and $O B$ express the angle $\angle A O B$.
The quality direction in the plane can be quantified relatively as an angular real scalar, where positive values indicate one orientation of the rotation, while the negative gives the reverse. For further understanding of the angle concept please refer to the literature on plane geometry, trigonometry, and mathematics. Here we only emphasise that the concept direction of a plane substance for the intuition a priori in its idea is singular, as a tabula object: Its defining angle starting from one given point O as the origo, and two other points A and B are necessary.

The order of real numbers also implies an order of angles in one plane; however, the angular arc size has a periodicity along the circle circumference. The arc is just not straight lines and has no primary quality of the first grade, but only a category of second grade (pqg-2).
Assuming that the measuring unit is $\left|\mathbf{e}_{1}\right|=\left|\mathbf{e}_{2}\right|=|\mathrm{OA}|=|\mathrm{OB}|=1 \in \mathbb{R}$ etc. $|\mathbf{u}|=1$, we apply:

- The circular arc $\overline{A P}$ belongs to the primary quality of second grade (pqg-2)
- The circular arc $\overline{\mathrm{AP}}$ is a scalar quantity $\quad \Varangle \mathrm{AOP}=\arg (\widetilde{\mathrm{AP}}) /|O A|=\phi \in \mathbb{R}$.

This is a measure relative to the pqg-1 quality, which is the $\left[\mathbb{R}_{+\mathrm{pqg}-1}^{1}\right]$ quantity, that we can always assume normalized $|O A|=1$ to the unit circle radius. Thereby the angle measure
$\beta=\Varangle\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=\Varangle\left(r_{1}, r_{2}\right)=\Varangle\left(r_{\mathrm{OA}}, r_{\mathrm{OB}}\right) \quad$ is an absolute scalar quantity $\left[\mathbb{R}_{\mathrm{pqg}-2}\right]$.

For quotation reference use: ISBN-13: 978-8797246931

