
4.4.3.5. The 1-vector Concept as the Primary Quality of First Grade (pqg-1)

As we have seen the substance for a 1 -vector is a quality that can generate the idea of a straight line through space. The geometric 1 -vector is the simplest primary quality of space \mathfrak{b} consisting of a direction and an extension that forms magnitude with a relative quantity $\left[\mathbb{R}_{+\mathrm{pqg}-1}^{1}\right] \rightarrow \mathbb{R}_{+}$ Especially, any arbitrary given 1-vector direction u we assign the real scalar quantity $|\mathbf{u}|=1 \in \mathbb{R}$ as a reference. This 1 -vector can then be dilated to the 1 -vector $\mathbf{z}=\lambda \mathbf{u}$ along the straight line ℓ_{u} to any magnitude $|\mathrm{z}|=\lambda \in \mathbb{R}_{+}$.
The magnitude is thus a real scalar \mathbb{R}_{+}for the relative quantity $\left[\mathbb{R}_{+\mathrm{pqg}-1}^{1}\right]$ for a concept the primary quality of the first grade (pqg-1), namely a 1 -vector concept.
With the term $\left[\mathbb{R}_{+\mathrm{pqg}-1}^{1}\right]$, we understand not only a positive real number $\lambda \in \mathbb{R}_{+}$representing the magnitude, but also the concept of extension in space with direction
A 1 -vector is thus a $\left[\mathbb{R}_{+\mathrm{pqg}-1}^{1}\right]$ quantity of the quality (pqg-1).
We call a designated geometric 1-vector for a first grade object. - A 1-vector object for us.

4.4.3.6. The Scalar as a Simple Pure Quantity

We have seen that the real numbers \mathbb{R} express the relative proportions of 1 -vectors along a straight line. In itself, the real numbers \mathbb{R} do not express geometric quality. Therefore, the pure real scalars \mathbb{R} have a primary quality of zero grade (pqg-0). ~ (0 -vector real scalar) -
The real scalar has no extension in the geometric space of physics!
Just as a point has no spatial extension (i). Interpreted as a vector
But given a 1 -vector \mathbf{u}, the real numbers $\lambda \in \mathbb{R}$ designates points out from a point O along the line ℓ_{u} through O , see \S 4.4.2.7, so that the 1 -vectors $\overrightarrow{\mathrm{OZ}}=\mathrm{z}=|\mathrm{z}| \mathrm{u}$ are a pqg-1 quality, where $|\mathrm{z}| \in \mathbb{R}_{\mathrm{pqg}-0}$ is the pure scalar quantity intuited as a zero grade subject.
The scalar $\lambda \in \mathbb{R}$ can be attached as substantia to a geometric point $P \in \ell_{\mathbf{u}}$ by a map $\mathfrak{p}: \mathbb{R} \rightarrow \ell_{\mathbf{u}}$, as indices λ, or an argument $\lambda \in \mathbb{R}$ for a representation $P=P_{\lambda}=\mathfrak{p}(\lambda)$.
The scalar accident for points appears as contingent to the reverse map $\lambda=\mathfrak{p}^{-1}(\mathrm{P}) \in \mathbb{R}$
In general, this inverse mapping does not assign a proper geometric quality to the real scalars $\mathbb{R}_{\boldsymbol{p q g - 0}}$ but expresses only the magnitude differences between geometric objects of the same grade of primary quality pqg- k. The magnitude is an objective ratio.
In this special case with the 1 -vector \mathbf{u} as a reference, it is the relation to the $\boldsymbol{p q g}-1$ objects \mathbf{z}. As has been the tradition in physics, it is possible to assign a scalar potential to geometric points for different substances (e.g., temperature, electric- and gravitational potentials).

4.4.4. Relationship Between the Concepts of the 0 -vector Scalar and the 1 -vector

4.4.4.1. The scalar product between the co-linear 1-vector

We have seen that the real scalar is a relative measure between two geometric collinear 1 -vectors \mathbf{a} and \mathbf{u} along a straight line $\ell_{\mathbf{u}}$. We choose the 1 -vector \mathbf{u} as a norm for the scalar. From this, the scalar distance $\lambda=|\mathbf{a}| /|\mathbf{u}| \geq 0$ is the relative ratio between \mathbf{a} and $\mathbf{u} \neq 0$ $\mathbf{a}=\lambda \mathbf{u}$ is a scalar dilation, whence the real scalar equation $|\mathbf{a}|=\lambda|\mathbf{u}|$ must apply
How can we construct a scalar ratio of 1-vectors $\mathbf{a}=\lambda \mathbf{u}$ and $\mathbf{b}=\beta \mathbf{u}$?
We try a product between 1 -vectors. Since scalars commute by multiplication, we synthetic judge that scalars also commute with 1 -vectors and products between 1 -vectors, so here in the co-linear case we have
$\mathbf{a} \cdot \mathbf{b}=(\lambda \mathbf{u}) \cdot(\beta \mathbf{u})=\lambda \beta(\mathbf{u} \cdot \mathbf{u})=\lambda \beta(\mathbf{u})^{2}$
Since \mathbf{u} is the norm for a scalar relationship we must judge $(\mathbf{u})^{2}=1$, thus the a priori idea (4.73) $\quad|\mathbf{u}|^{2}=|\mathbf{u}|=1$.

Looking at a alone, we have $(\mathbf{a})^{2}=\mathbf{a} \cdot \mathbf{a}=(\lambda \mathbf{u}) \cdot(\lambda \mathbf{u})=\lambda^{2}(\mathbf{u} \cdot \mathbf{u})=\lambda^{2}(\mathbf{u})^{2}=\lambda^{2} \geq 0$, hence
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark
(4.74) $\quad(\mathbf{a})^{2}=|\mathbf{a}|^{2}=\lambda^{2} \quad \Rightarrow \quad|a|=|\lambda| \in \mathbb{R}_{+}, \quad$ we then define $\quad|\mathbf{a}|=\sqrt{\mathbf{a} \cdot \mathbf{a}}=\sqrt{(\mathbf{a})^{2}}$

We see by (4.72)-(4.73) that the product between colinear 1-vectors $\mathbf{a} \cdot \mathbf{b}$ gives a scalar $\lambda \beta$, and in particular the 1 -vector auto dot product $\mathbf{a} \cdot \mathbf{a}$ gives the square of the magnitude $|\mathbf{a}|$ of the geometric 1-vector a
4.4.4.2. The Unitary Co-Linear Direction Vector and the Inverse Geometric 1-vector

We define the normed directional 1 -vector called a unit-vector from a 1-vector a;
$\hat{\mathbf{a}}:=\frac{\mathbf{a}}{|\mathbf{a}|}=\mathbf{u}$.
Here we have that $\hat{\mathbf{a}} \cdot \hat{\mathbf{a}}=1$, and $\hat{\mathbf{a}}$ indicate the normal direction as a unitary linear direction \mathbf{u}, both a symbol for a specific object of the pure pqg-1 quality a linear direction.
We now define the multiplicative inverse geometric 1 -vector \mathbf{a}^{-1}, as co-linear to \mathbf{a}.
The requirement for this is that the scalar dot product must meet $\mathbf{a} \cdot \mathbf{a}^{-1}=1$, and then
$\mathrm{a}^{-1}=\frac{\mathrm{a}}{\mathrm{a}^{2}}$,
because, when $\mathbf{a}=\lambda \hat{\mathbf{a}}$ we have $\mathbf{a} \cdot \mathbf{a}=\lambda^{2}$, then $1=\hat{\mathbf{a}} \cdot \hat{\mathbf{a}}=\frac{\lambda \hat{\mathbf{a}} \cdot \lambda \hat{\mathbf{a}}}{\lambda^{2}}=\frac{\mathbf{a} \cdot \mathbf{a}}{\lambda^{2}}=\mathbf{a} \cdot \frac{\mathbf{a}}{\lambda^{2}}=\mathbf{a} \cdot \frac{\mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}=\mathbf{a} \cdot \mathbf{a}^{-1}$.
4.4.4.3. The Zero-vector Representing All Point

When $\mathbf{a} \cdot \mathbf{a}>0$ we say that the 1 -vector \mathbf{a} is a finite and proper 1 -vector. We introduce the concept of the zero-vector $\mathbf{0}$. If the scalar product $\mathbf{a} \cdot \mathbf{a}=0$ then $\mathbf{a}=\mathbf{0}$. We can write
(4.77) $\quad \mathbf{0}=\overrightarrow{\mathrm{OO}}=\overrightarrow{\mathrm{AA}}=\overrightarrow{\mathrm{PP}}$ for $\forall \mathrm{P}$.

The zero-vector represents all points, because, for all points $\forall \mathrm{P}$, the zero-vector map the point to $\mathrm{P} \rightarrow \mathrm{P}=\mathrm{P}$. Refer to section 4.4.2, where 1-vector $\overrightarrow{\mathrm{OA}}$ leads O into A
The zero-vector is neutral to 1 -vector addition $\mathbf{a}+\mathbf{0}=\mathbf{a}$
In general, for Euclidean geometric 1-vectors, the auto scalar-product applies $\mathbf{a} \cdot \mathbf{a}>0 \quad$ or $\mathbf{a} \cdot \mathbf{a}=0 \Leftrightarrow \mathbf{a}=\mathbf{0}$.
4.4.4.4. The First Grade Object, a Geometric 1-vector \rightarrow a Subject in a Substance as Idealism We understand that the straight lines in geometry are platonic ideal subjects therefore they cannot be recognized

- We know immediately about space, we can distinguish two locations, and that we can judge a direction from one local site A to the second location B. To make this quality of space to an object, we have invented the concept of a geometric 1-vector as an object of first grade. For us, this object is a geometric idea (noumenon) that as a subject represents a substance of space, namely the primary quality of first grade (pqg-1).
This substance is given by a specific intelligible subject as a physical difference in space, which we experience. To intuit this experience, we form as an idea a 1-vector object that represents the difference with a corresponding direction.

Das Ding an sich, subject; pqg-1, the invisible straight line segment of direction
Das Ding für uns, object; the spatial difference as direction and magnitude.

For quotation reference use: ISBN-13: 978-8797246931

