Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

Multiplication of 1 -vector with negative scalar is allowed $\beta=-\lambda$.
Remember that the 1 -vector itself as a subject is independent of a start point, then a negative 1 -vector is pointing towards the origin O along the ray $r_{\mathrm{OE}}$ with a negative orientation -1 e , caused by its positive orientated half line designated by the direction $\mathbf{e}=\overrightarrow{\mathrm{OE}}$. E.g., $|-1 \mathrm{e}|=|\mathbf{e}|$. If the 1 -vector object $\mathrm{OA}=\mathbf{a}=\lambda \mathbf{e}$ is pointing away from O for $\lambda>0$, then the 1 -vector subject $\mathrm{b}=-\lambda \mathbf{e}$ points A toward O , as the 1 -vector object $\overrightarrow{\mathrm{AO}}=\mathbf{b}$ pointing from A to O . The point B is located opposite to A relative to the origin $O$, for the 1 -vector object $\overrightarrow{O B}=\mathbf{b}=-\lambda \mathbf{e}$ pointing away from O in a negative orientation opposite the positive of the direction $\mathbf{e}$.
$\mathbf{a}+\mathbf{b}=\mathbf{0} \quad \Leftrightarrow \quad \mathbf{b}=-\mathbf{a} \quad$ or $\quad \overrightarrow{O A}+\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A O}=\overrightarrow{O A}-\overrightarrow{O A}=\mathbf{0} . \quad \overrightarrow{a^{b}} A$
The negative 1 -vector is a geometric 1 -vector multiplied by the scaling -1 .
Multiplication of a geometric 1 -vector with the scalar -1 is a line segment reversion or parity inversion of first grade pqg-1 concerning the Descartes extension of Euclidian space. This -1 multiplication of 1 -vectors is sometimes just called a parity operation.
The negative line direction is inversely orientated to the positive direction (vii).
The magnitude is retained $|\mathbf{a}|=|\mathbf{b}|$ but the orientation of direction is opposite for a grade one parity inversion in Euclidean space.
Division of 1 -vector with a scalar $\lambda \neq 0$ is equivalent to multiplication by the reciprocal
$\lambda=\frac{1}{\alpha}, \quad$ that is $\quad \mathbf{d}=\frac{\mathbf{a}}{\lambda}=\frac{1}{\lambda} \mathbf{a}=\alpha \mathbf{a} \quad \Rightarrow \quad \mathbf{a}=\lambda \mathbf{d}=\frac{\mathbf{d}}{\alpha}$
Multiplication of a 1 -vector with the scalar 0 (zero) is allowed, $0 \mathbf{a}=\mathbf{0}=0$. When a pqg-1-vector is multiplied by the scalar 0 it loses its direction and turns into a pqg-0 quality We see that the zero vector is a 0 -vector, and hence the scalar 0 .
Here we allow $\mathbf{0}=0$. It may be advantageous to regard the zero vector as a scalar.
4.4.2.6. The unit object for a linear direction

Giving a 1 -vector $\mathbf{a}$, we can define the unit direction vector $\hat{\mathbf{a}}:=\frac{\mathbf{a}}{|\mathbf{a}|} \Rightarrow \mathbf{a}=|\mathbf{a}| \hat{\mathbf{a}}$,
which is colinear with $\mathbf{a}$ and has the magnitude $|\hat{\mathbf{a}}| \equiv 1$.
The unit vector â sets a linear direction in space.
$\mathbf{a}=|\mathbf{a}| \hat{\mathbf{a}}$
In addition to the indication hat ${ }^{\wedge}$ on the vector of unit generating directions, e.g., $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$, the following names for basis unit 1-vectors are often used $\mathbf{e}_{i}$ or $\boldsymbol{\sigma}_{i}$. Here the indices $i$ indicate that there may be a basis set of several linear directions in space, $i=0,1,2,3 \ldots n \in \mathbb{N}$ For an arbitrary variable direction in space, we now use the term $\mathbf{u}$, which not only is a unit 1 -vector, but we also called it an unitary 1 -vector, (to emphasise an arbitrary variable direction) In all these cases, we expect a unit $|\mathbf{u}|=\left|\mathbf{e}_{i}\right|=\left|\sigma_{i}\right|=|\hat{\mathbf{x}}|=|\hat{\mathbf{y}}|=|\hat{\mathbf{z}}|=|\hat{\mathbf{a}}|=1$
4.4.2.7. The Linear Extension from a 1 -vector

An arbitrary given segment OU can be extended by multiplying with a positive real number from O to any arbitrary point Z on the half-line ray $r_{\mathrm{OU}}$. For this, we use the concept of a unitary 1 -vector $\mathbf{u}=\overrightarrow{\mathrm{OU}}$, where we choose the a priori judgment that $|\mathbf{u}|=|\overrightarrow{\mathrm{OU}}|=1$, and its direction is arbitrarily given by the 1 -vector $\mathbf{u}$ along the ray $r_{\mathbf{u}}=r_{\mathrm{OU}}$.
For the arbitrary point $\mathrm{Z} \in r_{\mathrm{OU}}$, we have a 1 -vector dilation
$\overrightarrow{\mathrm{OZ}}=\mathrm{z}=|\mathrm{z}| \mathbf{u}=|\mathbf{z}| \overrightarrow{\mathrm{OU}}$ $\square$ $\stackrel{r_{\text {ou }}^{\sim}}{\mathbb{R}_{+}}$
when the positive real number $\lambda=|\mathbf{z}| \in\left[0, \infty\left[\right.\right.$ is increasing through $\overrightarrow{\mathbb{R}}_{+}$spanning the ray $r_{\mathrm{OU}}$. By a positive scalar $\lambda \in \mathbb{R}_{+}$, the vector $\mathrm{z}=\lambda \mathrm{u}$ designates a point $\mathrm{Z} \in r_{\mathrm{OU}}$ from the unitary 1 -vector $u=\overrightarrow{O U}$ direction quality from the local origo $O . \quad|z|=\lambda=|z| /|u|=|\overrightarrow{O Z}|\left[u^{-1}\right]$ From the pqg-1 direction $u=\overrightarrow{0 U}$ with the joint quantity $\left[\mathbb{R}_{+p q g-1}^{1}\right]$ of the scalar $\lambda=|z| \geq 0$, we have the substance of the linear line idea and thus the idea of a straight half line as a ray equivalent to the idea of a beam of light from $O$.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark
Research on the a priori of Physics

### 4.4.2.8. The Parametric Development of a Straight Linear Ray

We introduce the linear 1 -vector function $\mathbf{z}=\mathbf{z}(\lambda)=\lambda \mathbf{u}$, which we call the parameterization of ray $r_{\mathrm{OU}}$. The real scalar argument $\lambda \in\left[0, \infty\left[\cong \mathbb{R}_{+}\right.\right.$is referred to as the parameter that produces the idea of a ray, as a straight half-line from O

$$
\text { (4.64) } \quad r_{\mathrm{OU}}=\left\{\mathrm{Z} \mid \overrightarrow{\mathrm{OZ}}=\mathrm{z}=\mathrm{z}(\lambda)=\lambda \mathbf{u}=\overrightarrow{\mathrm{OU}}, \lambda \in \mathbb{R}_{+}\right\}
$$

### 4.4.2.9. The Parametric Span of a Straight Line

The linear 1-vector function $\mathbf{a}=\alpha \mathbf{e}, \quad \alpha \in \mathbb{R}$ for the direction $\mathbf{e}=\overrightarrow{\mathrm{OE}}$, where we include all real numbers (also negative) we call the parameterisation of the straight line
(4.65) $\quad \ell_{\mathrm{OE}}=\{\mathrm{A} \mid \overrightarrow{\mathrm{OA}}=\mathbf{a}(\alpha)=\alpha \mathbf{e}=\alpha \overrightarrow{\mathrm{OE}}, \quad \alpha \in \mathbb{R}\}$

This real scalar argument $\alpha \in \mathbb{R}$, we call for the parameter in the production of the line.
This is not only a scalar for the dilation scaling ratio of a 1 -vector, but the negative real scalars
$\alpha<0$ gives a parity inverse orientated direction to the basis vector $\overrightarrow{\mathrm{OE}}$.
The scalar $\alpha \in \mathbb{R}$ is often also called the coordinate of point A along line $\ell_{\mathrm{OE}}$.

### 4.4.2.10. Co-linear 1-vectors

All geometric 1 -vectors obtained by multiplying a particular 1-vector $\mathbf{e}$ with different scalars $\alpha_{1}, \alpha_{2} \ldots \in \mathbb{R}$ are colinear $\mathbf{a}_{1}=\alpha_{1} \mathbf{e}, \mathbf{a}_{2}=\alpha_{2} \mathbf{e}, \ldots$, lay in line. ${ }^{199}$ We can also mark the vectors by indexing directly with the real numbers $\mathbf{x}_{\lambda}=\mathbf{x}(\lambda)=\lambda \mathbf{e}$, the index $\lambda \in \mathbb{R}$
4.4.2.11. The Spatial Line as a Real Linear Vector Space $\mathbb{R}_{\mathrm{e}}^{\mathbf{1}}$

Given the geometrical basis vector $\mathbf{e}=\hat{1}$, see $\S$ 4.1.1.7 (4.18) and section 4.1.2 (4.26), we get the number line as a 1 -vector $\mathbf{x}_{\lambda}=\lambda_{1} \hat{1}_{1} \in \mathbb{R}_{\mathrm{e}}^{1}$ produced by the real scalars $\lambda_{1} \in \mathbb{R}$, shown in Figure 4.1, and here:


Thus, we have the straight line as a graphic representation of a 1-dimensional 1-vector space.
4.4.2.12. A 1-vector Intuited as a Translation

In section 4.4.2.4 we described the addition of collinear
1 -vectors and intuition with the addition of linear translations. We can add linearly independent vectors and thus also translations, see Figure 4.5
We look at two linearly independent 1 -vectors


Figure 4.5 Addition of translations.
$\mathbf{x}=\overrightarrow{\mathrm{OX}}=\overrightarrow{\mathrm{O} \overrightarrow{\mathrm{x}}(0)}$ and $\quad t=\overrightarrow{00_{t}}=\overrightarrow{0 \overrightarrow{\mathrm{t}}(0)}$
both of which can be seen as translations $\overrightarrow{\mathfrak{x}}: \mathrm{O} \rightarrow \mathrm{X}$ and $\overrightarrow{\mathrm{t}}: 0 \rightarrow O_{t}$
The identical translation is defined as a zero vector $\mathbf{0}=\overrightarrow{\mathrm{OO}}=\overrightarrow{\mathrm{PP}}$, Which can represent all points The addition is defined (4.59) so that the resulting translation $0 \rightarrow X_{t}$, (Figure 4.5)

## (4.67)

 From the starting point of the intuition, the origin O , we introduce the plot map of 1-vectors for points in space $\mathcal{P}_{\mathrm{O}}: \mathbf{p} \rightarrow \mathrm{P}$, so that $\mathrm{P}=\mathcal{P}_{\mathrm{O}}(\mathbf{p})$. We write object intuition in Figure 4.5 as
$0=\mathcal{P}_{\mathrm{O}}(\mathbf{0}), \quad \mathrm{X}=\overrightarrow{\mathrm{x}}(0)=\mathcal{P}_{\mathrm{O}}(\mathbf{x}), \quad \mathrm{O}_{\mathrm{t}}=\overrightarrow{\mathrm{t}}(\mathbf{0})=\mathcal{P}_{\mathrm{O}}(\mathrm{t})$ and $\mathrm{X}_{\mathrm{t}}=\mathcal{P}_{\mathrm{O}}(\mathbf{x}+\mathrm{t})$, also $\mathrm{X}_{\mathrm{t}}=\mathcal{P}_{\mathrm{X}}(\mathrm{t})$
In general, for all points P we apply the map $\mathcal{P}_{\mathrm{P}}$ of vectors into the space of points:
${ }^{199}$ As a co-linear bundle of parallel lines as (4.55) explained first at the start of section 4.4.2.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH, $-147-\quad$ Volume I, - Edition 2-2020-22, - Revision 6,

For quotation reference use: ISBN-13: 978-8797246931

