Geometric Critique

of Pure

Mathematical Reasoning

Edition 2

 \bigcirc

N

020-22

lens

Erfurt

Andres

en

 $\mathbf{\nabla}$

esearc

D

on

the

ρ

priori

of

Physics

- II. The Geometry of Physics – 4. The Linear Natural Space in Physics – 4.4. The Straight Line 2 in Geometry of Physical

Multiplication of 1-vector with negative scalar is allowed $\beta = -\lambda$.

Remember that the 1-vector itself as a subject is independent of a start point, then a negative 1-vector is pointing towards the origin O along the ray $r_{\rm OE}$ with a negative orientation -1e, caused by its positive orientated half line designated by the direction $\mathbf{e} = \overrightarrow{OE}$. E.g., $|-1\mathbf{e}| = |\mathbf{e}|$. If the 1-vector object $\overrightarrow{OA} = \mathbf{a} = \lambda \mathbf{e}$ is pointing away from O for $\lambda > 0$, then the 1-vector subject $\mathbf{b} = -\lambda \mathbf{e}$ points A toward O, as the 1-vector object $\overrightarrow{AO} = \mathbf{b}$ pointing from A to O. The point B is located opposite to A relative to the origin O, for the 1-vector object $\overrightarrow{OB} = \mathbf{b} = -\lambda \mathbf{e}$ pointing away from O in a negative orientation opposite the positive of the *direction* **e**.

1)
$$\mathbf{a} + \mathbf{b} = \mathbf{0} \iff \mathbf{b} = -\mathbf{a}$$
 or $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AO} = \overrightarrow{OA} - \overrightarrow{OA} = \mathbf{0}$.

The negative 1-vector is a geometric 1-vector multiplied by the scaling -1. Multiplication of a geometric 1-vector with the scalar -1 is a *line segment reversion* or parity inversion of first grade pag-1 concerning the Descartes extension of Euclidian space. This -1 multiplication of 1-vectors is sometimes just called a *parity operation*. The negative line *direction* is inversely orientated to the positive *direction (vii)*. The magnitude is retained $|\mathbf{a}| = |\mathbf{b}|$ but the orientation of *direction* is opposite for a grade one parity inversion in Euclidean space. Division of 1-vector with a scalar $\lambda \neq 0$ is equivalent to multiplication by the reciprocal

(4.62)
$$\lambda = \frac{1}{\alpha}$$
, that is $\mathbf{d} = \frac{\mathbf{a}}{\lambda} = \frac{1}{\lambda}\mathbf{a} = \alpha \mathbf{a} \Rightarrow \mathbf{a} = \lambda \mathbf{d} = \frac{\mathbf{d}}{\alpha}$.

Multiplication of a 1-vector with the scalar 0 (zero) is allowed, $0\mathbf{a} = \mathbf{0} = 0$. When a pqg-1-vector is multiplied by the scalar 0 it loses its *direction* and turns into a pqg-0 quality. We see that the zero vector is a 0-vector, and hence the scalar 0.

Here we allow $\mathbf{0} = \mathbf{0}$. It may be advantageous to regard the zero vector as a scalar.

4.4.2.6. The unit object for a linear direction

Giving a 1-vector **a**, we can define the unit *direction* vector $\hat{\mathbf{a}} \coloneqq \frac{\mathbf{a}}{\mathbf{a}} \Rightarrow \mathbf{a} = |\mathbf{a}|\hat{\mathbf{a}}$, which is colinear with **a** and has the magnitude $|\hat{\mathbf{a}}| \equiv 1$. $\mathbf{a} = |\mathbf{a}|\hat{\mathbf{a}}$ The unit vector $\hat{\mathbf{a}}$ sets a linear *direction* in space.

In addition to the indication hat^ on the vector of unit generating *directions*, e.g., $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$, the following names for basis unit 1-vectors are often used \mathbf{e}_i or $\boldsymbol{\sigma}_i$. Here the indices *i* indicate that there may be a basis set of several linear *directions* in space, $i=0,1,2,3...n \in \mathbb{N}$ For an arbitrary variable *direction* in space, we now use the term **u**, which not only is a unit 1-vector, but we also called it an **unitary** 1-vector, (to emphasise an arbitrary variable *direction*). In all these cases, we expect a unit $|\mathbf{u}| = |\mathbf{e}_i| = |\mathbf{\sigma}_i| = |\hat{\mathbf{x}}| = |\hat{\mathbf{x}}| = |\hat{\mathbf{z}}| = |\hat{\mathbf{z}}| = 1$

4.4.2.7. The Linear Extension from a 1-vector

An arbitrary given segment OU can be extended by multiplying with a positive real number from O to any arbitrary point Z on the half-line ray r_{OU} . For this, we use the concept of a unitary 1-vector $\mathbf{u} = \overrightarrow{0U}$, where we choose the a priori judgment that $|\mathbf{u}| = |\overrightarrow{0U}| = 1$, and its *direction* is arbitrarily given by the 1-vector **u** along the ray $r_{\rm u} = r_{\rm OII}$. For the arbitrary point $Z \in r_{OIL}$, we have a 1-vector dilation

 $\cup \mathbf{z} = |\mathbf{z}|\mathbf{u}$

$$\overrightarrow{OZ} = \mathbf{z} = |\mathbf{z}|$$

$$\mathbf{z} = |\mathbf{z}|\mathbf{u} = |\mathbf{z}|\overrightarrow{\mathrm{OU}},$$

when the positive real number $\lambda = |\mathbf{z}| \in [0, \infty)$ is increasing through \mathbb{R}_+ spanning the ray r_{OU} ... By a positive scalar $\lambda \in \mathbb{R}_+$, the vector $\mathbf{z} = \lambda \mathbf{u}$ designates a point $\mathbf{Z} \in r_{OU}$ from the unitary 1-vector $\mathbf{u} = \overrightarrow{OU}$ *direction quality* from the local origo O. $|\mathbf{z}| = \lambda = |\mathbf{z}|/|\mathbf{u}| = |\overrightarrow{OZ}| [\mathbf{u}^{-1}].$ From the *pqg*-1 *direction* $\mathbf{u} = \overrightarrow{OU}$ with the joint quantity $[\mathbb{R}^1_{+pqg-1}]$ of the scalar $\lambda = |\mathbf{z}| \ge 0$, we have the substance of the linear line idea and thus the idea of a straight half line as a ray equivalent to the idea of a beam of light from O.

Jens Erfurt Andresen, M.Sc. Physics, Denmark	- 146 -	Research on the a priori of Physics $-$	December 2022
For quotation reference use:	ISBN-13:	978-8797246931	

For quotation reference use: ISBN-13: 978-8797246931

- 4.4.2. The Concept of Geometric Vectors - 4.4.2.12 A 1-vector Intuited as a Translation -

4.4.2.8. The Parametric Development of a Straight Linear Ray We introduce the linear 1-vector function $\mathbf{z} = \mathbf{z}(\lambda) = \lambda \mathbf{u}$, which we call the parameterization of ray r_{OU} . The real scalar argument $\lambda \in [0, \infty] \cong \mathbb{R}_+$ is referred to as the parameter that produces the idea of a **ray**, as a straight half-line from O

(4.64)
$$r_{\rm OU} = \{ \mathbf{Z} \mid \overrightarrow{\mathbf{0Z}} = \mathbf{z} = \mathbf{z}(\lambda) = \lambda \mathbf{u} = \overrightarrow{\mathbf{0U}}, \ \lambda \in \mathbb{R}_+ \}$$

4.4.2.9. The Parametric Span of a Straight Line

The linear 1-vector function $\mathbf{a} = \alpha \mathbf{e}, \quad \alpha \in \mathbb{R}$ for the *direction* $\mathbf{e} = \overrightarrow{OE}$, where we include all real numbers (also negative) we call the parameterisation of the straight line

(4.65)
$$\boldsymbol{\ell}_{OE} = \left\{ \mathbf{A} \mid \overrightarrow{OA} = \mathbf{a} \left(\alpha \right) = \alpha \mathbf{e} = \alpha \overrightarrow{OE}, \quad \alpha \in \mathbb{R} \right\}$$

This real scalar argument $\alpha \in \mathbb{R}$, we call for the parameter in the production of the line. This is not only a scalar for the dilation scaling ratio of a 1-vector, but the negative real scalars $\alpha < 0$ gives a parity inverse orientated *direction* to the basis vector \overrightarrow{OE} . The scalar $\alpha \in \mathbb{R}$ is often also called the coordinate of point A along line ℓ_{OF} .

4.4.2.10. Co-linear 1-vectors

All geometric 1-vectors obtained by multiplying a particular 1-vector **e** with different scalars $\alpha_1, \alpha_2 \dots \in \mathbb{R}$ are colinear $\mathbf{a}_1 = \alpha_1 \mathbf{e}$, $\mathbf{a}_2 = \alpha_2 \mathbf{e}$, ..., lay in line.¹⁹⁹ We can also mark the vectors by indexing directly with the real numbers $\mathbf{x}_{\lambda} = \mathbf{x}(\lambda) = \lambda \mathbf{e}$, the index $\lambda \in \mathbb{R}$.

4.4.2.11. The Spatial Line as a Real Linear Vector Space \mathbb{R}^1_{e} Given the geometrical basis vector $\mathbf{e} = \hat{\mathbf{1}}$, see § 4.1.1.7 (4.18) and section 4.1.2 (4.26), we get the number line as a 1-vector $\mathbf{x}_{\lambda} = \lambda_1 \hat{\mathbf{1}}_1 \in \mathbb{R}^1_{\mathbf{a}}$ produced by the real scalars $\lambda_1 \in \mathbb{R}$, shown in Figure 4.1, and here:

Thus, we have the straight line as a graphic representation of a 1-dimensional 1-vector space.

4.4.2.12. A 1-vector Intuited as a Translation

In section 4.4.2.4 we described the addition of collinear 1-vectors and intuition with the addition of linear translations. We can add linearly independent vectors and thus also translations, see Figure 4.5

We look at two linearly independent 1-vectors

(4.66)
$$\mathbf{x} = \overrightarrow{\mathbf{0X}} = \overrightarrow{\mathbf{0X}}(\overrightarrow{\mathbf{0}})$$
 and $\mathbf{t} = \overrightarrow{\mathbf{00}}_{\mathbf{t}} = \mathbf{0} \overrightarrow{\mathbf{t}}(\overrightarrow{\mathbf{0}})$

both of which can be seen as translations $\vec{x}: 0 \to X$ and $\vec{t}: 0 \to 0_t$. The identical translation is defined as a zero vector $\mathbf{0} = \overrightarrow{OO} = \overrightarrow{PP}$, Which can represent all points. The addition is defined (4.59) so that the resulting translation $0 \rightarrow X_t$, (Figure 4.5)

 $\overrightarrow{\text{OX}_{t}} = \mathbf{x} + \mathbf{t} = \overrightarrow{\text{OX}} + \overrightarrow{\text{OO}_{t}} = \overrightarrow{\text{OX}} + \overrightarrow{\text{XX}_{t}} = \overrightarrow{\text{Ox}(0)} + \overrightarrow{\text{Ot}(0)} = \overrightarrow{\text{OX}} + \overrightarrow{\text{Xt}(X)} = \overrightarrow{\text{Ot}(0)} + \overrightarrow{\text{t}(0)}\overrightarrow{\textbf{s}(0_{t})} = \overrightarrow{\text{OO}_{t}} + \overrightarrow{\text{Ot}_{t}}\overrightarrow{\textbf{X}_{t}} = \mathbf{t} + \mathbf{x}.$ (4.67)From the starting point of the intuition, the origin O, we introduce the plot map of 1-vectors for points in space $\mathcal{P}_{\Omega}: \mathbf{p} \to \mathbf{P}$, so that $\mathbf{P} = \mathcal{P}_{\Omega}(\mathbf{p})$. We write object intuition in Figure 4.5 as

(4.68)
$$0 = \mathcal{P}_0(\mathbf{0}), \quad \mathbf{X} = \vec{\mathbf{x}}(\mathbf{0}) = \mathcal{P}_0(\mathbf{x}),$$

 $0_t = \vec{t}(0) = \mathcal{P}_0(t)$ and $X_t = \mathcal{P}_0(\mathbf{x} + \mathbf{t})$, also $X_t = \mathcal{P}_X(t)$ In general, for all points P we apply the map \mathcal{P}_{P} of vectors into the space of points:

As	a co-linear bundle of parallel lines as (4.55) explained fi	irst at the start of	f section 4.4.2.
C	Jens Erfurt Andresen, M.Sc. NBI-UCPH,	- 147 -	Volume I, – Ed

(4.6

tion 2 - 2020-22 - Revision 6