$\mathbf{\nabla}$

CS

earch

on

the

ρ

priori

of

Physics

Mathematical Reasoning

Edition

N

 \bigcirc

N

020 -

N

December 2022

3

lens

Erfurt

Andres

Õ

Geometric Critique of Pure

- II. The Geometry of Physics – 4. The Linear Natural Space in Physics – 4.4. The Straight Line 2 in Geometry of Physical

4.4.2. The Concept of Geometric Vectors

By physically indicating two different object points A and B (on a surface) in space we can set a *direction* from A to B. The line segment for this *direction* is called a spatial geometric vector \overrightarrow{AB} object and given a designation with a small fat Latin Letter¹⁹⁵, e.g., $\mathbf{d} = \overrightarrow{AB}$. The *direction* from a point O to another A is a *pag-1 quality* that provides the concept of a geometric vector (1-vector), here called $\mathbf{a} = \overrightarrow{OA}$, drawn It has the magnitude |OA|, such that $|\mathbf{a}| = |\overrightarrow{OA}| \in \mathbb{R}_+$. The object of the geometrical vector is a *quantity* of the type $[\mathbb{R}^{1}_{pag-1}]$, wherein \mathbb{R}_{+} , stands for the magnitude represented by a positive real scalar \mathbb{R}_+ and *pqg*-1 indicates a line *direction* in space. The square brackets $[\mathbb{R}^1_{+nqg-1}]$ show that *quantity* real scalar magnitude is relative to one unit as in (4.54)

The geometric vector corresponds here in the *first grade* to a map $\vec{a} : \ell_{OA} \rightarrow \ell_{OA}$ leading point O into the second point A over the distance $|\mathbf{a}| = |\overrightarrow{\mathbf{0A}}|$, so that $A = \vec{a}(0)$ and \vec{a} lead any arbitrary points over in new points

(4.55)	$\mathbf{a} = \overrightarrow{0 \ \vec{\mathfrak{a}}(0)} = \overrightarrow{0 \mathbf{A}},$		$\mathbf{a} = \mathbf{a}_{\mathrm{B}} = \overrightarrow{\mathrm{B}\vec{\mathfrak{a}}(\mathrm{B})},$		$\mathbf{a} = \mathbf{a}_{\mathrm{C}} = \overrightarrow{\mathrm{C} \vec{\mathfrak{a}}(\mathrm{C})},$		$\mathbf{a} = \mathbf{a}_{\mathrm{D}} = \overrightarrow{\mathrm{D}\ \vec{\mathfrak{a}}(\mathrm{D})}$	
	C	a _c	0	a	A B	a _B		
		D	a _D				$\rightarrow \infty$	

The four shown vector objects are all the same geometric vector subject $\mathbf{a} = \mathbf{a}_{\rm B} = \mathbf{a}_{\rm C} = \mathbf{a}_{\rm D}$. The bundle of all parallel oriented line segments $P\vec{a}(P)$ from all points $\forall P \in \mathcal{G}$ in space represents the concept of a vector $\mathbf{a} = \overrightarrow{P \mathbf{a}}(\overrightarrow{P})$ from the intuition vector \overrightarrow{OA} , where the ordered representative OA is the generator of the vector $\mathbf{a} = \overrightarrow{OA}$ in the entire space \mathfrak{G} .

The object representative of $\mathbf{a} = P \vec{a}(P)$ starting at any point P, we denote $\mathbf{a}_{P} \sim P \vec{a}(P)$. The geometric vector *direction* given by **a** (also written $\mathbf{a} = \vec{a} = \vec{a}$) are ideal straight linear. and all of the representing distances¹⁹⁶ from all $\forall P$, $|\mathbf{a}_P| = |\mathbf{a}_R| = |\mathbf{a}_C| = |\mathbf{a}_D| = |\mathbf{a}|$ are mutual equidistant, as one determent *quantity*. Then we call the scalar $|\mathbf{a}|$ the magnitude of the vector **a**. An arbitrary geometric vector **a** has a real scalar magnitude $|\mathbf{a}| \in \mathbb{R}$, constant, the same throughout the space \mathfrak{G} . This is the subject substance of a geometric 1-vector.

4.4.2.2. Geometric Translation

The concept of geometric vectors illustrates in physics a conception of linear translation along a straight line. The translation $\mathbf{a} = \overrightarrow{OA}$ is a shift that is equidistant along the line, and we extend this to be equidistant above all with OA parallel lines.

We pass the a priori judgment; the map $\vec{a}: 0 \to A$ from (4.55) apply to all points $P \in \mathfrak{G}$ in space, so that the geometric vector $\mathbf{a} = \overrightarrow{Oa} = \overrightarrow{Oa}(\overrightarrow{O}) = \overrightarrow{Pa}(\overrightarrow{P})$ is the global representative of the translation, and thus as an object is a generator for translation.

4.4.2.3. The 1-vector Concept

It is common to count a vector as belonging to a vector space V_n of dimension $n \in \mathbb{N}$. This does not imply that one vector has *n* directions. – A general¹⁹⁷ vector v, which satisfies a linear additive algebra (4.1)-(4.11), may not necessarily possess any *direction*. –

⁵ We use the little **fat** upright Latin alphabet **a**, **b**, **c**, **d** ... **z** to denote a vector (1-vector) that has geometric reference to the natural space of up to 3 dimensions, 3D.

⁶⁶ Implicit the magnitude of a distance as a scalar is measured relative to a unit vector (e.g., itself), as described in (v).

⁹⁷ A general vector v without *direction* designated by a lowercase letter in italics, contrary to a regular geometric vector giving a *direction* is denoted by a small fat Latin letter **a**. Another expression for a vector with *direction* is $\vec{a} = \vec{a} = a$.

C Jens Erfurt Andresen, M.Sc. Physics, Denmark -144Research on the a priori of Physics

For quotation reference use: ISBN-13: 978-8797246931

- 4.4.2. The Concept of Geometric Vectors - 4.4.2.5 Multiplication of 1-vector with a Real Scalar -

However, a regular geometric line vector has just one *direction*, therefore called as a 1-vector. The 1-vector subjects belong to a substance that has a *primary quality of first grade (pqg-1)*. The simple geometric vector is also often called 'a *grade* 1 vector' or 'a *grade* 1 blade'. A geometric space has dimension $n \in \mathbb{N}$ if there is a set of precisely n finite basis 1-vectors $\{\mathbf{a}_1 \dots \mathbf{a}_n\}$, (also called a maximal set) that are linearly independent, that is,

 $\alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n = 0 \quad \Rightarrow \quad \forall \alpha_1 = \alpha_2 = \dots + \alpha_n = 0.$ (4.56)

> The geometric 1-vector space G_n is said to have *n* independent principal *pqg*-1 *directions*.¹⁹⁸ Two proper finite 1-vectors **a** and **e** are linearly dependent, if there exists a real scalar $\lambda \in \mathbb{R}$, so that $\mathbf{a} = \lambda \mathbf{e}$ for $\lambda \neq 0$, thus $\mathbf{a} + \alpha \mathbf{e} = 0 \Rightarrow \alpha = -\lambda \neq 0$. In this case, we say, the 1-vectors **a** and **e** are co-linear (colinear).

4.4.2.4. Addition of Co-linear 1-vectors

The 1-vector $\mathbf{a} = \overrightarrow{OA}$ and the 1-vector $\mathbf{b} = \overrightarrow{OB}$ as objects on the same straight line ℓ_{OA} can add to a new 1-vector $\mathbf{c} = \mathbf{a} + \mathbf{b} = \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC} = \overrightarrow{EC'}$, as shown $(\mathbf{a}_{B} = \mathbf{a}, \mathbf{c}_{E} = \mathbf{c})$

In the *primary quality of first grade (pgg-1)* the co-linear vectors addition is equivalent to a real scalar addition. Here in the example is $|\overrightarrow{OA}| + |\overrightarrow{OB}| = |\overrightarrow{OC}| = |\overrightarrow{EC'}|$ along ℓ_{OA} . The addition of oriented line segments is shown to illustrate the extension in space along a straight line, similar to the size of the real number is increased when the same sign number is added. – Of course, subtraction is also allowed. (consult ref. $[10]p5 \rightarrow$) If we intuit 1-vector as a translation, we have

(4.57)
$$\mathbf{a} = \overrightarrow{OA} = \overrightarrow{Oa(O)} = \overrightarrow{Ba(B)} \text{ and } \mathbf{b} = \overrightarrow{OB} = \overrightarrow{Ob}$$

(4.58) $\mathbf{c} = \mathbf{b} + \mathbf{a} = \overrightarrow{Oc} = \overrightarrow{OB} + \overrightarrow{OA} = \overrightarrow{Ob(O)} + \overrightarrow{Oa(O)} = \overrightarrow{Ob(O)}$

for the shown objects, and thus (0) $\mathbf{c} = \mathbf{b} + \mathbf{a} = \overrightarrow{\mathrm{OC}} = \overrightarrow{\mathrm{OB}} + \overrightarrow{\mathrm{OA}} = \overrightarrow{\mathrm{Ob}}(\overrightarrow{\mathrm{O}}) + \overrightarrow{\mathrm{Oa}}(\overrightarrow{\mathrm{O}}) = \overrightarrow{\mathrm{Ob}}(\overrightarrow{\mathrm{O}}) + \overrightarrow{\mathrm{Ba}}(\overrightarrow{\mathrm{B}}) = \overrightarrow{\mathrm{OC}} = \overrightarrow{\mathrm{Oc}}(\overrightarrow{\mathrm{O}}) = \overrightarrow{\mathrm{Ec}}(\overrightarrow{\mathrm{E}}) = \overrightarrow{\mathrm{Ec}} = \mathbf{c}_{\mathrm{E}} = \mathbf{c} .$ We add translations and have a combined translational represented by a 1-vector addition. We introduce the additive neutral vector **0**, such that $\mathbf{a} + \mathbf{0} = \mathbf{a} \sim \overrightarrow{\mathbf{0A}} + \overrightarrow{\mathbf{PP}} = \overrightarrow{\mathbf{0A}}$. This vector **0** is assigned to all points $P \cong \overrightarrow{PP}$. For the real numbers assigned to 1-vectors applies $|\overrightarrow{OA}| + |\overrightarrow{PP}| = |\overrightarrow{OA}| \sim |\mathbf{a}| + |\mathbf{0}| = |\mathbf{a}|$, therefore we concluded $|\mathbf{0}| = 0$, and $|\overrightarrow{PP}| = |P| = 0$. The identical translation $\vec{0} : P \to P$ is represented by $\mathbf{0} = P\vec{0}(P) = \vec{PP}$ Since the **0** vector is without extension and therefore without *direction*, this (4.59) applies All points in space are represented by the Null-vector **0**, i.e., the points are even identical. Multiplication with a real scalar $\lambda \in \mathbb{R}$ to a geometric 1-vector is the continuum concept in the

(4.59)everywhere in 65 space.

4.4.2.5. Multiplication of 1-vector with a Real Scalar

straight number line as an expansion on the concept of addition with the same 1-vector a whole number of times.

We choose a 1-vector object $\mathbf{e} = \overrightarrow{OE}$ as the unit of the number line and get all the 1-vectors $|\mathbf{e}| = |\overrightarrow{OA}| / |\overrightarrow{OE}| = |\mathbf{a}| [\mathbf{e}^{-1}]$

(4.60)
$$\mathbf{a} = \lambda \mathbf{e} = \overrightarrow{OA} = \lambda \overrightarrow{OE}$$
, where $\lambda = |\mathbf{a}|/|\mathbf{e}| = \mathbf{e}$
 $\mathbf{b} = \beta \mathbf{e}$ $\mathbf{a} = \lambda \mathbf{e}$

The object $\mathbf{a} = \overrightarrow{OA}$ point away from O in the *direction* $\mathbf{e} = \overrightarrow{OE}$, along the ray $r_{OE} \subset \ell_{OA}$.

⁸ It has since Leibniz been recognized that the physical location-space is 3-dimensional, therefore we only use bold characters up to three dimensions, so we can only find three linearly independent fat-denoted basis vectors $\alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \alpha_3 \mathbf{a}_3 = 0 \implies \alpha_1 = \alpha_2 = \alpha_3 = 0$. See footnote¹⁷⁸ for a confirming reason.

Jens Erfurt Andresen, M.Sc. NBI-UCP	Н,
-------------------------------------	----

-145

For quotation reference use: ISBN-13: 978-8797246931

Volume I – Edition 2 – 2020-22 Revision 6