Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

4.4.2. The Concept of Geometric Vectors

By physically indicating two different object points A and B (on a surface) in space we can set a direction from A to B. The line segment for this direction is called a spatial geometric vector $\overrightarrow{A B}$ object and given a designation with a small fat Latin Letter ${ }^{195}$, e.g., $\mathbf{d}=\mathrm{AB}$.
The direction from a point O to another A is a pqg-1 quality that provides the concept of a geometric vector (1-vector), here called $\mathbf{a}=\overrightarrow{O A}, \quad$ drawn \square
It has the magnitude $|O A|$, such that $|\mathbf{a}|=|\overrightarrow{\mathrm{OA}}| \in \mathbb{R}_{+}$. The object of the geometrical vector is a quantity of the type $\left[\mathbb{R}_{+\boldsymbol{p q g - 1}}^{1}\right]$, wherein \mathbb{R}_{+}, stands for the magnitude represented by a positive real scalar \mathbb{R}_{+}and pqg-1 indicates a line direction in space. The square brackets $\left[\mathbb{R}_{+\boldsymbol{p q g - 1}}^{1}\right]$ show that quantity real scalar magnitude is relative to one unit as in (4.54)

The geometric vector corresponds here in the first grade to a map $\overrightarrow{\mathfrak{a}}: \ell_{\mathrm{OA}} \rightarrow \ell_{\mathrm{OA}}$ leading point O into the second point A over the distance $|\mathbf{a}|=|\overrightarrow{\mathrm{OA}}|$, so that $A=\overrightarrow{\mathfrak{a}}(0)$ and $\overrightarrow{\mathfrak{a}}$ lead any arbitrary points over in new points

The four shown vector objects are all the same geometric vector subject $\mathbf{a}=\mathbf{a}_{B}=\mathbf{a}_{C}=\mathbf{a}_{\mathrm{D}}$ The bundle of all parallel oriented line segments $P \underline{\vec{a}(P)}$ from all points $\forall P \in \mathfrak{G}$ in space represents the concept of a vector $\mathbf{a}=\vec{P} \overrightarrow{\mathfrak{a}}(\mathrm{P})$ from the intuition vector $\overrightarrow{\mathrm{OA}}$, where the ordered representative $\underline{O A}$ is the generator of the vector $\mathbf{a}=\overrightarrow{O A}$ in the entire space \mathfrak{G}.
The object representative of $\mathbf{a}=\overrightarrow{\mathrm{P} \overrightarrow{\mathfrak{a}}(\mathrm{P})}$ starting at any point P , we denote $\mathbf{a}_{\mathrm{P}} \sim \mathrm{P} \overrightarrow{\mathfrak{a}}(\mathrm{P})$. The geometric vector direction given by \mathbf{a} (also written $\mathbf{a}=\overrightarrow{\mathbf{a}}=\vec{a}$) are ideal straight linear, and all of the representing distances ${ }^{196}$ from all $\forall \mathrm{P},\left|\mathbf{a}_{\mathrm{P}}\right|=\left|\mathbf{a}_{\mathrm{B}}\right|=\left|\mathbf{a}_{\mathrm{C}}\right|=\left|\mathbf{a}_{\mathrm{D}}\right|=|\mathbf{a}|$ are mutual equidistant, as one determent quantity. Then we call the scalar $|\mathbf{a}|$ the magnitude of the vector \mathbf{a}. An arbitrary geometric vector a has a real scalar magnitude $|\mathbf{a}| \in \mathbb{R}$, constant, the same throughout the space \mathfrak{G}. This is the subject substance of a geometric 1-vector.
4.4.2.2. Geometric Translation

The concept of geometric vectors illustrates in physics a conception of linear translation along a straight line. The translation $\mathbf{a}=\overrightarrow{\mathrm{OA}}$ is a shift that is equidistant along the line, and we extend this to be equidistant above all with OA parallel lines.
We pass the a priori judgment; the map $\overrightarrow{\mathfrak{a}}: 0 \rightarrow A$ from (4.55) apply to all points $P \in \mathfrak{G}$ in space, so that the geometric vector $\mathbf{a}=\overrightarrow{O A}=\overrightarrow{O \overrightarrow{\mathfrak{a}}(0)}=\overrightarrow{\mathrm{P}(\mathrm{a}(\mathrm{P})}$ is the global representative of the translation, and thus as an object is a generator for translation
4.4.2.3. The 1 -vector Concep

It is common to count a vector as belonging to a vector space V_{n} of dimension $n \in \mathbb{N}$. This does not imply that one vector has n directions. - A general ${ }^{197}$ vector v, which satisfies a linear additive algebra (4.1)-(4.11), may not necessarily possess any direction. -

We use the little fat upright Latin alphabet $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \ldots \mathbf{z}$ to denote a vector (1-vector) that has geometric reference to the natural space of up to 3 dimensions, 3D.
${ }^{196}$ Implicit the magnitude of a distance as a scalar is measured relative to a unit vector (e.g., itself), as described in (v).
${ }^{27}$ A general vector v without direction designated by a lowercase letter in italics, contrary to a regular geometric vector giving a direction is denoted by a small fat Latin letter \mathbf{a}. Another expression for a vector with direction is $\bar{a}=\mathbf{a}=\mathbf{a}$.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark
$144-\quad$ Research on the a priori of Physics
For quotation reference use: ISBN-13: 978-8797246931

However, a regular geometric line vector has just one direction, therefore called as a 1 -vector The 1 -vector subjects belong to a substance that has a primary quality of first grade (pqg-1). The simple geometric vector is also often called 'a grade 1 vector' or 'a grade 1 blade'. A geometric space has dimension $n \in \mathbb{N}$ if there is a set of precisely n finite basis 1 -vectors $\left\{\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right\}$, (also called a maximal set) that are linearly independent, that is,
$\alpha_{1} \boldsymbol{a}_{1}+\alpha_{2} \boldsymbol{a}_{2}+\cdots \alpha_{n} \boldsymbol{a}_{n}=0 \quad \Rightarrow \quad \forall \alpha_{1}=\alpha_{2}=\ldots \alpha_{n}=0$.
The geometric 1-vector space G_{n} is said to have n independent principal pqg-1 directions. ${ }^{198}$ Two proper finite 1 -vectors \mathbf{a} and \mathbf{e} are linearly dependent, if there exists a real scalar $\lambda \in \mathbb{R}$, so that $\mathbf{a}=\lambda \mathbf{e}$ for $\lambda \neq 0$, thus $\mathbf{a}+\alpha \mathbf{e}=0 \Rightarrow \alpha=-\lambda \neq 0$
In this case, we say, the 1 -vectors \mathbf{a} and \mathbf{e} are co-linear (colinear).

4.4.2.4. Addition of Co-linear 1 -vectors

The 1-vector $\mathbf{a}=\overrightarrow{\mathrm{OA}}$ and the 1 -vector $\mathbf{b}=\overrightarrow{\mathrm{OB}}$ as objects on the same straight line ℓ_{OA} can add to a new 1-vector $\mathbf{c}=\mathbf{a}+\mathbf{b}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{EC}^{\prime}}$, as shown ($\mathbf{a}_{\mathrm{B}}=\mathbf{a}, \mathbf{c}_{\mathrm{E}}=\mathbf{c}$)

In the primary quality of first grade (pqg-1) the co-linear vectors addition is equivalent to a real scalar addition. Here in the example is $|\overrightarrow{\mathrm{OA}}|+|\overrightarrow{\mathrm{OB}}|=|\overrightarrow{\mathrm{OC}}|=\left|\overrightarrow{\mathrm{EC}^{\prime}}\right|$ along ℓ_{OA}.
The addition of oriented line segments is shown to illustrate the extension in space along a straight line, similar to the size of the real number is increased when the same sign number is added. - Of course, subtraction is also allowed. (consult ref. [10]p5 \rightarrow) If we intuit 1 -vector as a translation, we have
(4.57) $\quad \mathbf{a}=\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{O} \overrightarrow{\mathfrak{a}}(0)}=\overrightarrow{\mathrm{B} \overrightarrow{\mathfrak{a}}(\mathrm{B})}$ and $\quad \mathbf{b}=\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{O} \overrightarrow{\mathrm{b}}(0)}$ for the shown objects, and thus

We add translations and have a combined translational represented by a 1 -vector addition.
We introduce the additive neutral vector $\mathbf{0}$, such that $\mathbf{a}+\mathbf{0}=\mathbf{a} \sim \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{PP}}=\overrightarrow{\mathrm{OA}}$
This vector $\mathbf{0}$ is assigned to all points $\mathrm{P} \cong \overrightarrow{\mathrm{PP}}$. For the real numbers assigned to 1 -vectors applies $|\overrightarrow{\mathrm{OA}}|+|\overrightarrow{\mathrm{PP}}|=|\overrightarrow{\mathrm{OA}}| \sim|\mathbf{a}|+|\mathbf{0}|=|\mathbf{a}|$, therefore we concluded $|\mathbf{0}|=0$, and $|\overrightarrow{\mathrm{PP}}|=|\mathrm{P}|=0$.
(4.59) The identical translation $\overrightarrow{0}: \mathrm{P} \rightarrow \mathrm{P} \quad$ is represented by $\quad \mathbf{0}=\overrightarrow{\mathrm{P}(\mathrm{P})}=\overrightarrow{\mathrm{PP}}$

Since the $\mathbf{0}$ vector is without extension and therefore without direction, this (4.59) applies everywhere in \mathfrak{G} space.
All points in space are represented by the Null-vector $\mathbf{0}$, i.e., the points are even identical.
4.4.2.5. Multiplication of 1 -vector with a Real Scalar

Multiplication with a real scalar $\lambda \in \mathbb{R}$ to a geometric 1 -vector is the continuum concept in the straight number line as an expansion on the concept of addition with the same 1-vector a whole number of times.
We choose a 1-vector object $\mathbf{e}=\overrightarrow{\mathrm{OE}}$ as the unit of the number line and get all the 1-vectors

$$
\mathbf{a}=\lambda \mathbf{e}=\overrightarrow{\mathrm{OA}}=\lambda \overrightarrow{\mathrm{OE},} \begin{gathered}
\text { where } \\
\mathbf{b}=\beta \mathbf{e} \\
\xrightarrow{\mathrm{B}} \mathbf{e} \boldsymbol{e} \rightarrow|\mathbf{a}| /|\mathbf{e}|=|\overrightarrow{\mathrm{OA}}| /|\overrightarrow{\mathrm{OE}}|=|\mathbf{a}|\left[\mathbf{e}^{-1}\right] \\
\mathbf{a}=\lambda \mathbf{e}
\end{gathered}
$$

The object $\mathbf{a}=\overrightarrow{\mathrm{OA}}$ point away from O in the direction $\mathbf{e}=\overrightarrow{\mathrm{OE}}$, along the ray $r_{\mathrm{OE}} \subset \ell_{\mathrm{OA}}$.

[^0]
[^0]: ${ }^{198}$ It has since Leibniz been recognized that the physical location-space is 3-dimensional, therefore we only use bold characters up to three dimensions, so we can only find three linearly independent fat-denoted basis vectors
 $\alpha_{1} \mathbf{a}_{1}+\alpha_{2} \mathbf{a}_{2}+\alpha_{3} \mathbf{a}_{3}=0 \Rightarrow \alpha_{1}=\alpha_{2}=\alpha_{3}=0$. See footnote ${ }^{1 / 8}$ for a confirming reason.
 © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $-145-\quad$ Volume I, - Edition 2-2020-22, - Revision 6,

