Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

Given two distinct points $\mathrm{A} \neq \mathrm{E} \notin \ell_{\mathrm{AB}}$, the two lines ℓ_{AB} and ℓ_{EF} can only be parallel $\ell_{\mathrm{AB}} \| \ell_{\mathrm{EF}}$ if they meet only in one point P_{∞} at infinity
g. The idea of parallel lines is linked to the concept of one direction in space. The bundle of parallel lines, in the direction of a point P_{∞} at infinity, is called a linear direction.
h. we shall determine two objects representing points A and B to determine one straight line ${ }^{190}$ ℓ_{AB} and any resulting parallel lines will all point in the same direction P_{∞}.
i. One linear direction consists of a bundle of parallel lines through a point at infinity P_{∞}. The a priori transcendental common point at infinity P_{∞} cannot be determined or be the object of experience but only an intuition of a subject as a quality of the space \mathfrak{G} substance. - It is not the abstraction, one point at indefinitely P_{∞} without any location, ${ }^{191}$ but the two concrete object points A and B, which determine the direction in space.
j. A circle O through three points A, B, P is in contrast to the straight line ℓ_{AB}. The idea is the straight line, if the circular third point P is moved into the infinite $\mathrm{P} \rightarrow \mathrm{P}_{\infty}$.
We need two selected points to determine one straight line and thus only one direction.
The straight-line-segment $A B$ between two points A and B is a subject in space $(\mathfrak{F}$ substance. For intuition, the line segment we can objectify draw by an example, as shown in Figure 4.4
(iv) The concept of difference

There is no difference in space simpler than a line segment AB.
The proper finite line segment is the basic difference between two different points.
Here is the assumed a priori judgment (4.53) on the possible quality $\mathrm{A} \neq \mathrm{B}$ for $\mathrm{A}, \mathrm{B} \in \ell_{\mathrm{AB}}$. A difference as quality is a general concept of space \mathfrak{G} that apply everywhere. (ii) ${ }^{183}$ Individual differences can be subdivided into several differences.
Several differences can be added together into one difference $\mathrm{AB} \in \mathbb{I}$
The concept of quantity $d=|A B|$
A difference $\mathrm{AB} \in \mathfrak{\Omega}$ in space has a distance magnitude quantity.
Given two different points $\mathrm{A} \neq \mathrm{B}$ make a line segment as an object for our intuition.
The magnitude of the line segment $A B$ can endow the positive real number
$d=|\mathrm{AB}| \in \mathbb{R}_{+}$, here after called the magnitude $|\mathrm{AB}|$ for the line segment AB . This is the simplest form of quantified extension. ${ }^{186}$
The numerical scalar quantity $d=d_{|\mathrm{OE}|}=\Delta x=|\mathrm{AB}| \geq 0$ is a relative term, when there exist points $\exists \mathrm{O}, \mathrm{E} \in \ell_{\mathrm{AB}}$, so that $|\mathrm{OE}|=1$. The relative magnitude we define by the ratio

$\Delta x=\frac{|A B|}{|O E|} \Rightarrow$
$d=|A B| \in \mathbb{R}_{+}$
From the scalar concept of the real numbers \mathbb{R}, where $d=\Delta x \in \mathbb{R}_{+}$of a line segment $A B$, we can as we know form the concept of a number line that arranges the numbers along the line in order. A size order of magnitude of the real numbers \mathbb{R} is a quantitative system. between points A and B can be discriminated straight in relation to a second curved line k between A and B in that there is at least one point K on $k, \mathrm{~K} \in k$, which is not on $\ell_{\mathrm{AB}}, \mathrm{K} \notin \ell_{\mathrm{AB}}$. The point K may thus not be on the one straight line through A and B , but K can belong to a parallel straight line $\ell_{\mathrm{K}} \| \ell_{\mathrm{AB}}, \mathrm{K} \in \ell_{\mathrm{K}}$, that thus belongs to a bundle of lines parallel to AB . Even when you point out (direction) at a point in the celestial sky, it is not an object you point to, but a subject P_{∞}. One point P_{∞} is everywhere out there, thus it is infinity!
In my opinion, this also applies to the concept of the Big Bang, which in its idea is finite? - or - only a platonic idea? C Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad-142-\quad$ Research on the a priori of Physics

The system of points along a straight line is also a qualitative system, with the concept of $|\mathrm{AB}|$ for the real numbers as a quantity
In this way, the concept of numbers \mathbb{R} relate to the line concept. ${ }^{192}$
The real numbers \mathbb{R}, which are subject to addition, subtraction, multiplication, and division, with a commutative and distributive algebra, is assumed familiar to the reader. ${ }^{160}$
The real numbers with such an algebra constitute what we call a scalar field. ${ }^{161}$
With the concept of 'field ' we mean just that algebra for any category (scalar-, vector-, etc.) that can be applied everywhere in the space $\left(\mathfrak{5}\right.$ for physics. - A physical natural field. ${ }^{193}$
(vi) The concept of primary quality of first grade (pqg-1)

In that the difference between two points A and B can be assigned a quantity magnitude $|\mathrm{AB}|$ called a distance, all the points on a straight line ℓ_{AB} arranges in order as
$|A B|<\left|A B_{1}\right|<\left|A B_{2}\right|<\cdots<\left|A B_{i}\right|<\cdots$ and hence the points $A, B, B_{1}, B_{2}, \ldots B_{i}, \ldots$ are located in a line on the straight line ℓ_{AB}. This order scheme indicates a direction from A out over B to B_{1} and further on to $B_{2}, \ldots B_{i}, \ldots$. . This direction we express as $\underline{A B}$.

According to (iv) we are able to express it $\underline{\mathrm{AB}}_{i}=\underline{\mathrm{AB}}+\underline{\mathrm{BB}}_{i}$
and when it is all done in a straight line it is $\left|\underline{\mathrm{AB}}_{i}\right|=|\underline{\mathrm{AB}}|+\left|\underline{\mathrm{BB}_{i}}\right|$ addition of real numbers The fact, that it is possible to make a linear ordering of points by distances from one point A is called a primary quality of first grade (pqg-1), a concept of an ordered line, called $\overrightarrow{\mathfrak{R}}, \underline{\mathrm{AB}} \in \overrightarrow{\mathfrak{R}}$. This $\boldsymbol{p q g} \boldsymbol{- 1}$ quality defines a direction concept to line concept \mathfrak{R}, as a part substance or a sub-substance to the \mathfrak{G} space as a total substance.
We see that a pqg-1 in space \mathfrak{b} enables the concept of a quantity $\left[\mathbb{R}_{p q g-1}^{1}\right] \sim \overrightarrow{\mathbb{R}} \quad$ in space.
The line concept is thus linked to the real numbers \mathbb{R}, a quantitative order $\overrightarrow{\mathbb{R}} \rightarrow \overrightarrow{\mathfrak{R}} \rightarrow \mathfrak{L}$, and thus linear direction is a primary quality of first grade (pqg-1). ${ }^{194}$
(vii) The concept of direction as quality of first grade

The real numbers progressive ordering of points as above $0, A, B, B_{1}, B_{2}, B_{3}, \ldots$ enables the concept of a ray $r_{\mathrm{OA}} \subset \ell_{\mathrm{OA}}$, a half line, that starts at a point O , goes through A and successively through $\mathrm{B}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \ldots \in r_{\mathrm{OA}} \subset \ell_{\mathrm{OA}}$. To a line segment is added line segment etc...
For each point $\mathrm{P}_{i} \in r_{\mathrm{OA}}$ we attach a positive real number $x_{i} \in \overrightarrow{\mathbb{R}}_{+}$with the mapping $\mathfrak{p}: \mathbb{R}_{+} \rightarrow r_{\mathrm{OA}}$, so that $\mathrm{P}_{i}=\mathfrak{p}\left(x_{i}\right) \in r_{\mathrm{OA}}$, where $0=\mathfrak{p}(0)$ is the start point.
We can use continuous indexing of the points, we write $\mathrm{P}_{x}=\mathfrak{p}(x)$.
Just as two points indicate a direction $\underline{\mathrm{OA}}$ the half-line ray $r_{\mathrm{OA}} \subset(5$ make a direction outwards away from O , which we call positive. In the order from O to A we write OA , the positive direction away from O, has an inverse orientation (reverse order) from the A to O written $\underline{A O}$, which is the negative orientated direction, pointing toward O , inwards to an origin O , the inverse of outwards Further, we have the system from A to a point B written $\underline{\mathrm{AB}}$ as a positive orientated direction pointing away from A , we have the inverse orientation reversed from B to A written $\underline{\mathrm{BA}}$, as the negative orientated direction pointing toward the origin A.

${ }^{192}$ For the question of all real numbers related to the number line, please refer to the historical mathematical literature ${ }^{193}$ It is important to distinguish from the ideal pure mathematical field concept in German Zahl-Körper (scalar fields): $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$. ${ }^{194}$ Here's the review of (v) and (vi) are reversed on the historical causality, as the real numbers are invented to calculate distances in space geometry. It is easier here to briefly explain the qualitative possibility for an ordering scheme of points along a line with the real numbers quantitative order system.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH,
For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

