Geometric

Critique

of Pure

Mathematical Reasoning

Edition

 \bigcirc

N

020-

N

 \sim

en

 \mathbf{v}

rfurt

Andres

en

- II. . The Geometry of Physics – 4. The Linear Natural Space in Physics – 4.1. The Linear Algebraic Space –

(4.43)
$$s_{\infty}(\tau) = \sum_{\forall n \in \mathbb{Z}} \alpha_n e^{i2\pi n \nu \tau} \quad \in \mathbb{C} \implies \mathbb{C}_{\mathbb{Z}}^{\infty} = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}_n^1, \quad \text{for } \nu \in \mathbb{R}, \ \tau \in \mathbb{R}$$

The coefficients in the linear combination we write as an integral over one whole period of an arbitrary periodic function with the period $\frac{1}{v}$ as follows

(4.44)
$$\alpha_n = \nu \int_{\tau_0}^{\tau_0 + \frac{1}{\nu}} s_{\infty}(\tau) e^{-i2\pi n\nu\tau} d\tau \in \mathbb{C}, \quad \text{for } \nu \in \mathbb{R}, \quad \forall \tau \in \mathbb{R}, \quad \forall n \in \mathbb{Z}.$$

Now we not only let $N \to \infty$ but also $\nu \to 0$, and thus the period $\frac{1}{\nu} \to \infty$ and hereby leave the periodicity of the function $s_{\infty}(\tau)$. With the writing $\omega_n = 2\pi n\nu$, and $\Delta \omega = 2\pi \nu \rightarrow d\omega$, and by this, we rewrite the integral in (4.44) as a function \tilde{q} of ω_n , where

(4.45)
$$\alpha_n = \nu \, \tilde{q}(2\pi n\nu) = \frac{\Delta\omega}{2\pi} \tilde{q}(\omega_n).$$

Hence

(4.46)
$$s(\tau) = \frac{1}{2\pi} \sum_{\forall n \in \mathbb{Z}} \tilde{q}(\omega_n) e^{i\omega_n \tau} \Delta \omega \in \mathbb{C} \implies \bigoplus_{n \in \mathbb{Z}} \mathbb{C}_n^1 = \mathbb{C}_{\mathbb{Z}}^{\infty}, \text{ for } \tau \in \mathbb{R}, \ \omega_n \in \mathbb{R}.$$

We rename $s(\tau) \xrightarrow{\Delta \omega \to 0} q(\tau)$ and thus $\omega_n \to \omega$ interpret by intuition as a continuous *spectrum*. It is a requirement that the functions $q(\tau)$ and $\tilde{q}(\omega)$ are integrable. – Thus, we get:

4.1.4.2. The Vector Space of Fourier Integrals

The numerable series (4.46) is expanded over a real continuum of complex basis functions $\hat{u}_{\omega}^{*}(\tau) = e^{i\omega\tau} \in \mathbb{C}_{\omega}^{1}$, where $\omega \in \mathbb{R}$, which indicates the basic functions that have the real argument $\tau \in \mathbb{R}$, and the real basis index $\omega \in \mathbb{R}$.

Then we have the linear spaces of integrable functions that we call an *inverse Fourier integral*

$$q(\tau) = \int_{-\infty}^{\infty} \tilde{q}(\omega) \cdot e^{i\omega\tau} \, d\omega = \int_{\omega \in \mathbb{R}} d\omega \tilde{q}(\omega) e^{i\omega\tau} \quad \in \mathbb{C} \implies \mathbb{C}_{\mathbb{R}}^{\infty}. \tag{1.80}$$

The integral we interpret by intuition as a linear combination spanned over the basis set

(4.48)
$$\left\{ e^{i\omega\tau} \in \mathbb{C}^{1}_{\omega} \subset \bigoplus_{\omega \in \mathbb{R}} \mathbb{C}^{1}_{\omega} = \mathbb{C}^{\infty}_{\mathbb{R}} \ \middle| \ \tau \in \mathbb{R}, \ \forall \omega \in \mathbb{R} \right\}$$

spanning the linear form (4.47) wherein the complex scalars $d\omega \tilde{q}(\omega) \in \mathbb{C}$ constitute the factors in the linear additive integral, at a specific local time $\tau \in \mathbb{R}$, as the *inverse Fourier vector space* $\mathbb{C}^{\infty}_{\mathbb{R}} = \operatorname{span} \{ e^{i\omega\tau} \in \mathbb{C}^{1}_{\omega} | \tau, \forall \omega \in \mathbb{R} \}, \text{ with } \dim(\mathbb{C}^{\infty}_{\mathbb{R}}) = \infty, \text{ spanned of complex functions} \}$ In conjunction with this, we look at the Fourier vector space

 $\mathbb{C}^{\infty}_{\mathbb{R}} = \operatorname{span} \{ e^{-i\omega\tau} \in \mathbb{C}^{1}_{\tau} | \omega, \forall \tau \in \mathbb{R} \}, \text{ of complex functions of a real argument } \omega \in \mathbb{R} \text{ over the basic}$ functions of the same type, namely the *quality* of complex oscillating functions. We then achieve a vector space $\mathbb{C}^{\infty}_{\mathbb{R}}$ feature of functions $\mathbb{R} \to \mathbb{C}$: $\tilde{q}(\omega) \in \mathbb{C}$ that we call the continuous *spectrum* of oscillators, which we find in the *Fourier integral*

(4.49)
$$\tilde{q}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} q(\tau) \cdot e^{-i\omega\tau} d\tau = \frac{1}{2\pi} \int_{\tau \in \mathbb{R}} d\tau q(\tau) e^{-i\omega\tau} \in \mathbb{C} \to \mathbb{C}_{\mathbb{R}}^{\infty}.$$
 (1.81)

Here we interpret by intuition the integral as a linear span over a basis set of oscillations

$$\left\{ e^{-i\omega\tau} \in \mathbb{C}^{1}_{\tau} \subset \bigoplus_{\tau \in \mathbb{R}} \mathbb{C}^{1}_{\tau} = \mathbb{C}^{\infty}_{\mathbb{R}} \middle| \omega \in \mathbb{R}, \forall \tau \in \overrightarrow{\mathbb{R}} \right\}$$

at a specific local frequency $\omega \in \mathbb{R}$ for (4.49) wherein the complex scalar factors consist of $d\tau q(\tau) \in \mathbb{C}$ in the linear additive integral.

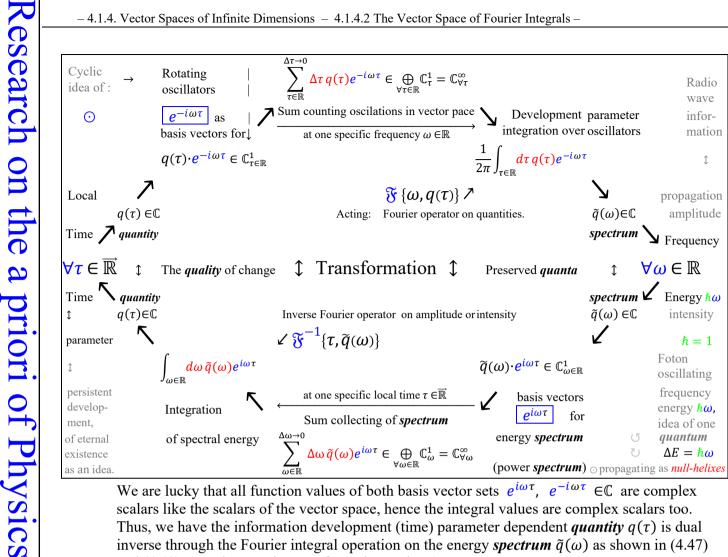
The common arguments are referred to as $\tau, \omega \in \mathbb{R}$ for the two typical functions

 $q(\tau)$, $\tilde{q}(\omega) \in \mathbb{C}$, and the basis functions as $e^{i\omega\tau}$, $e^{-i\omega\tau} \in \mathbb{C}$.

In physics, we intuit the basis vectors of a *spectrum* as oscillators with a transversal plane angular frequency energy $\omega \in \mathbb{R}$ and a time development parameter $\tau \in \mathbb{R}$. Therefore, we list the two dual *Fourier transforms* in a cyclic scheme : \rightarrow

© Jens Erfurt Andresen, M.Sc. Physics, Denmark -134December 2022 Research on the a priori of Physics

For quotation reference use: ISBN-13: 978-8797246931



We are lucky that all function values of both basis vector sets $e^{i\omega\tau}$, $e^{-i\omega\tau} \in \mathbb{C}$ are complex scalars like the scalars of the vector space, hence the integral values are complex scalars too. Thus, we have the information development (time) parameter dependent quantity $q(\tau)$ is dual inverse through the Fourier integral operation on the energy spectrum $\tilde{q}(\omega)$ as shown in (4.47) and (4.49). See also Fourier transforms in Section 1.7.7. Anyway, in the intuition of physics, the development of a scalar *quantity* $q(\tau) \in \mathbb{C}$ of an *entity* has the quality to be measured by counts relative to an infinite basis set of timing oscillator clocks $\{\hat{u}_{\tau}(\omega) = e^{-i\omega\tau} \in \mathbb{C}_{\tau}^{\infty} \mid \forall \tau \in \mathbb{R}\}$ from where we can span a linear space containing the weight factors $\tilde{q}(\omega) \in \mathbb{C}$ called a scalar *spectrum* over angular frequency energies $\omega \in \mathbb{R}$. These spectral energy quantities have themselves a quality given by the infinite dual conjugated basis set of oscillations $\{\hat{u}^*_{\omega}(\tau) = e^{i\omega\tau} \in \mathbb{C}^{\infty}_{\omega} | \forall \omega \in \mathbb{R}\}$ from which we can span linear space that contains the possible developing quantity $q(\tau) \in \mathbb{C}$ for the entity. The reader may note for each $\omega \in \mathbb{R}$, the two dual oscillator basis sets are mutual independent even if contained in the same geometrical plane of their rotations in that they are reversal orientated to each other $\pm \omega$.

The philosophy of this epistemology expressed in the scheme above is that all time parameter values $\forall \tau \in \mathbb{R}$ are available simultaneously, called *the eternal time concept*. This is the mandatory prerequisite to say that each specific *spectral* oscillator frequency $\omega \in \mathbb{R}$ is constantly preserved (photon energy $\hbar\omega$). Classical expressed as of conservation of energy (eternally constant). Opposite to fix a specific event time point $\tau = t \in \mathbb{R}$ demand all *spectral* frequencies $\forall \omega \in \mathbb{R}$, $-\infty \le \omega \le \infty$ be momentane available. That simply tells us to have all oscillator frequency energies present (called the ultraviolet catastrophe). The impossibility of eternity and the absolute now presence is the cause of *Quantum Mechanics*. This dual complementarity is just the a priori foundation of what we call Heisenberg uncertainty. To determine an absolute now requires infinite energy, and eternity requires no energy at all, where nothing happens. The synthetic judgment is $\Delta \tau \cdot \omega \gtrsim 1 \iff \Delta \tau \cdot \Delta E \gtrsim \hbar$.

C Jens Erfurt Andresen, M.Sc. NBI-UCPH,

For quotation reference use: ISBN-13: 978-8797246931

Copyrighted material from hardback: ISBN-13: 978-8797246931, paperback: ISBN-13: 978-8797246948, Kindle and PDF-file: ISBN-13: 978-87972469

(4.50)

(4.51)