Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931
$\mathbb{C}_{1}^{1}=\operatorname{span}\left\{1_{\odot}^{\cup}\right\}=\left\{z=\psi 1{ }_{\odot}^{\cup} \mid \psi \in \mathbb{C}\right\}$, with the dimension $\operatorname{dim}\left(\mathbb{C}_{1}^{1}\right)=\operatorname{dim}\left(1{ }_{\odot}^{\cup}\right)=1$,
as a representative of the concept of the complex plane. ${ }^{171}$

Figure 4.3 The complex unit circle is an example of one basis vector $1 \stackrel{\odot}{\odot}$, which produces the complex plane.

4.1.3.2. The Complex Scalar

We look at scalars \mathbb{C} themselves and its linear combinations $\psi=\psi 1 \in \mathbb{C}$ from the neutral element $1 \in \mathbb{C}$ for multiplication. We know that the complex numbers themselves have no extension, nor the neutral 1. Therefore, we must judge $\operatorname{Dim}(\mathbb{C})=0,-$ in physics

4.1.3.3. A Multi-dimensional Complex Vector Space

We write a multidimensional complex space as \mathbb{C}^{n}, combined as $\mathbb{C}^{n}=\underbrace{\mathbb{C}_{1}^{1} \oplus \ldots \mathbb{C}_{j}^{1} \oplus \ldots \mathbb{C}_{n}^{1}}$.
We have an isometry with the real vector space $\mathbb{R}^{2 n} \leftrightarrow \mathbb{C}^{n}$. I cannot formulate a direct intuitive graphic basis for \mathbb{C}^{n}, that deviates from what already identifies the real space $\mathbb{R}^{2 n}$ for intuition We must wait for chapter 6 to get a richer understanding of the higher dimensional complex rotational structure of objects in physics by Geometric Algebra.

4.1.4. Vector Spaces of Infinite Dimensions

We can form vector spaces of functions by a scalar linear combination from basis functions Here we only look at complex functions with one real argument of type

$$
\rightarrow \mathbb{C}, \Lambda \rightarrow f(\Lambda) \in \mathbb{C} \text { for } \nabla \Lambda \in \mathbb{K}
$$

As we have seen, it is necessary to find a basis set to make an intuition of a vector space Here we will as the foundation use complex periodic basis-functions of the type ${ }^{172}$

$$
\hat{u}_{\tau}(\omega)=e^{-i \omega \tau} \in \mathbb{C}_{\tau}^{1}
$$

$$
\text { over } \omega \in \mathbb{R} \text {, }
$$

where $\tau \in \mathbb{R}$ is the parameter that arguments the functions of $\omega \in \mathbb{R}$ as basis vectors, and τ will specify indexing of the infinite basis set of complex oscillating functions $\hat{u}_{\tau}(\omega)$ to ou intuition. And as well we have their complementary conjugated

$$
\hat{u}_{\omega}^{*}(\tau)=e^{i \omega \tau} \in \mathbb{C}_{\omega}^{1},
$$

$$
\text { over } \tau \in \mathbb{R}
$$

where $\omega \in \mathbb{R}$ is the parameter that arguments the functions of $\tau \in \mathbb{R}$ as basis vectors, and now ω will specify indexing of the infinite basis set of complex development functions $\hat{u}_{\omega}^{*}(\tau)$ to our intuition. Both these two sets of basic functions are linearly independent through randomly picked indices, ${ }^{173}$ e.g., $\omega_{j} \neq \omega_{k}$

$$
\alpha_{j} e^{-i \omega_{j} \tau}+\alpha_{k} e^{-i \omega_{k} \tau}=0 \Rightarrow \alpha_{j}=0, \alpha_{k}=0 \quad \text { for } \omega_{j} \neq \omega_{k},
$$

because as we always apply $e^{i \omega \tau} \neq 0$, then by multiplying $e^{i \omega_{k} \tau}$ into (4.38) we get
$\alpha_{j} e^{-i\left(\omega_{j}-\omega_{k}\right) \tau}+\alpha_{k} e^{-i 0}=0 \Rightarrow \alpha_{j} e^{-i\left(\omega_{j}-\omega_{k}\right) \tau}=-\alpha_{k} \quad$ for $\forall \tau \in \mathbb{R}$,
Here $\alpha_{j} e^{-i\left(\omega_{j}-\omega_{k}\right) \tau}$ is constant $\left(-\alpha_{k}\right)$ for all arguments τ, which can only be the case when $\omega_{j}=\omega_{k}$ thereby $\alpha_{j}=-\alpha_{k}$, or $\alpha_{j}=0$ thereby $\alpha_{k}=0$, that is (4.38).

- Just the same with the complementary conjugate, e.g., $\tau_{j} \neq \tau_{k}$.

First, we look at a specific finite example, a vector space $\left(P_{N}, \mathbb{C}\right)$ of periodic functions $s_{N}: \mathbb{R} \rightarrow \mathbb{C}$ with a particular fundamental frequency $v \in \mathbb{R}$ with the period $\frac{1}{v}$, so that

$$
s_{N}(\tau)=s_{N}\left(\tau+\frac{m}{v}\right) \in \mathbb{C} \quad \text { for } \quad \forall \tau \in \mathbb{R}, \quad \forall m \in \mathbb{Z}
$$

We choose the indexing n for the basic functions of $\tau \in \mathbb{R}$ indices parameterised with $\omega_{n}=2 \pi n v$ Here the first basis vector is $e^{i 2 \pi v \tau} \in \mathbb{C}_{1}^{1}$, and then we constitute 'overtones' basis vectors $e^{i 2 \pi n \nu \tau}$ as the basis set of periodic functions

We then form a linear combination to what we call a Fourier series

$$
s_{N}(\tau)=\sum_{n=-N}^{N} \alpha_{n} e^{i 2 \pi n v \tau} \in \mathbb{C} \rightarrow \mathbb{C}_{\mathbb{Z}}^{2 N+1} \leftrightarrow P_{N}, \quad \text { for } \quad v, \tau \in \mathbb{R}, \quad \text { where } \alpha_{-n}=\alpha_{n}^{*}
$$

The function value is a complex scalar $s_{N}(\tau) \in \mathbb{C}$, while the functions $\left(s_{N}: \mathbb{R} \rightarrow \mathbb{C}\right) \in \mathbb{C}_{\mathbb{Z}}^{2 N+1}$ constitutes a vector space P_{N} having the dimension $\operatorname{dim}\left(P_{N}\right)=2 N+1$. Therefore, we have the writing form $s_{N}(\tau) \in \mathbb{C} \rightarrow \mathbb{C}_{\mathbb{Z}}^{2 N+1}$ of the scalar which has its cause in this vector space.
We let $N \rightarrow \infty$ and thus get an infinite dimensional vector space $P^{\infty} \leftrightarrow \mathbb{C}_{\mathbb{Z}}^{\infty}=\bigoplus_{n=-\infty}^{\infty} \mathbb{C}_{n}^{1}$,
and thus, the infinite Fourier series for a periodic function $\quad s_{\infty}(\tau)=s_{\infty}\left(\tau+\frac{m}{v}\right) \in \mathbb{C}, \forall m \in \mathbb{Z}$
© Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-133-\quad$ Volume I, - Edition 2-2020-22, - Revision 6, \quad December 2022

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

