Research

on

th

 $\overline{\mathbf{0}}$

ρ

priori

of

Physics

Geometric Critique

of Pure

Mathematical Reasoning

Edition

020-22

lens

Erfurt

Andres

 \mathbf{O}

 $\mathbb{C}_1^1 = \operatorname{span}\{\mathbb{1}_{\mathbb{C}}^{\mathfrak{G}}\} = \{z = \psi \mathbb{1}_{\mathbb{C}}^{\mathfrak{G}} | \psi \in \mathbb{C}\}, \text{ with the dimension } \dim(\mathbb{C}_1^1) = \dim(\mathbb{1}_{\mathbb{C}}^{\mathfrak{G}}) = 1,$ as a representative of the concept of the complex plane.¹⁷¹

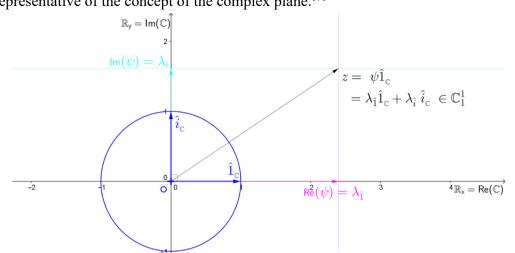


Figure 4.3 The complex unit circle is an example of one basis vector 1°_{\circ} , which produces the complex plane.

4.1.3.2. The Complex Scalar

We look at scalars \mathbb{C} themselves and its linear combinations $\psi = \psi 1 \in \mathbb{C}$ from the neutral element $1 \in \mathbb{C}$ for multiplication. We know that the complex numbers themselves have no extension, nor the neutral 1. Therefore, we must judge $Dim(\mathbb{C}) = 0$, -in physics!

4.1.3.3. A Multi-dimensional Complex Vector Space

We write a multidimensional complex space as \mathbb{C}^n , combined as $\mathbb{C}^n = \mathbb{C}^1_1 \bigoplus ... \mathbb{C}^1_j \bigoplus ... \mathbb{C}^1_n$.

We have an isometry with the real vector space $\mathbb{R}^{2n} \leftrightarrow \mathbb{C}^n$. I cannot formulate a direct intuitive graphic basis for \mathbb{C}^n , that deviates from what already identifies the real space \mathbb{R}^{2n} for intuition. We must wait for chapter 6 to get a richer understanding of the higher dimensional complex rotational structure of objects in physics by Geometric Algebra.

⁷¹ The low indices 1 in \mathbb{C}_1^1 indicate that it is the first complex plane object in a system of several planes ... \mathbb{C}_1^1 ... (or fields). C Jens Erfurt Andresen, M.Sc. Physics, Denmark - 132 -Research on the a priori of Physics December 2022 For quotation reference use: ISBN-13: 978-8797246931

- 4.1.4. Vector Spaces of Infinite Dimensions - 4.1.3.3 A Multi-dimensional Complex Vector Space -4.1.4. Vector Spaces of Infinite Dimensions We can form vector spaces of functions by a scalar linear combination from basis functions. Here we only look at complex functions with one real argument of type: (4.35) $f: \mathbb{R} \to \mathbb{C}, \ \lambda \to f(\lambda) \in \mathbb{C}$ for $\forall \lambda \in \mathbb{R}$ As we have seen, it is necessary to find a basis set to make an intuition of a vector space. Here we will as the foundation use complex periodic basis-functions of the type¹⁷² $\hat{u}_{\tau}(\omega) = e^{-i\omega\tau} \in \mathbb{C}^{1}_{\tau},$ (4.36)over $\omega \in \mathbb{R}$. where $\tau \in \mathbb{R}$ is the parameter that arguments the functions of $\omega \in \mathbb{R}$ as basis vectors, and τ will specify indexing of the infinite basis set of complex oscillating functions $\hat{u}_{\tau}(\omega)$ to our intuition. And as well we have their complementary conjugated $\hat{u}^*_{\omega}(\tau) = e^{i\omega \tau} \in \mathbb{C}^1_{\omega},$ (4.37)over $\tau \in \mathbb{R}$ where $\omega \in \mathbb{R}$ is the parameter that arguments the functions of $\tau \in \mathbb{R}$ as basis vectors, and now ω will specify indexing of the infinite basis set of complex development functions $\hat{u}_{\omega}^{*}(\tau)$ to our intuition. Both these two sets of basic functions are linearly independent through randomly picked indices,¹⁷³ e.g., $\omega_i \neq \omega_k$ $\alpha_i e^{-i\omega_j \tau} + \alpha_k e^{-i\omega_k \tau} = 0 \implies \alpha_i = 0, \ \alpha_k = 0 \text{ for } \omega_i \neq \omega_k,$ (4.38)because as we always apply $e^{i\omega\tau} \neq 0$, then by multiplying $e^{i\omega_k\tau}$ into (4.38) we get $\alpha_i e^{-i(\omega_j - \omega_k)\tau} + \alpha_k e^{-i0} = 0 \implies \alpha_i e^{-i(\omega_j - \omega_k)\tau} = -\alpha_k \text{ for } \forall \tau \in \mathbb{R},$ (4.39)Here $\alpha_i e^{-i(\omega_j - \omega_k)\tau}$ is constant $(-\alpha_k)$ for all arguments τ , which can only be the case when $\omega_i = \omega_k$ thereby $\alpha_i = -\alpha_k$, or $\alpha_i = 0$ thereby $\alpha_k = 0$, that is (4.38). – Just the same with the complementary conjugate, e.g., $\tau_i \neq \tau_k$. First, we look at a specific finite example, a vector space (P_N, \mathbb{C}) of periodic functions $s_N: \mathbb{R} \to \mathbb{C}$ with a particular fundamental frequency $\nu \in \mathbb{R}$ with the period $\frac{1}{\nu}$, so that $s_N(\tau) = s_N\left(\tau + \frac{m}{v}\right) \in \mathbb{C}$ for $\forall \tau \in \mathbb{R}, \forall m \in \mathbb{Z}$. (4.40)We choose the indexing *n* for the basic functions of $\tau \in \mathbb{R}$ indices parameterised with $\omega_n = 2\pi n\nu$. Here the first basis vector is $e^{i2\pi\nu\tau} \in \mathbb{C}_1^1$, and then we constitute 'overtones' basis vectors $e^{i2\pi n\nu\tau}$ as the basis set of periodic functions (4.4)

1)
$$\begin{cases} e^{i2\pi n\nu\tau} \in \mathbb{C}_n^1 \subset \bigoplus_{n=-N}^N \mathbb{C}_n^1 = \mathbb{C}_{\mathbb{Z}}^{2N+1} \mid n = -N \dots - 1, 0, 1 \dots N \end{cases}.$$

We then form a linear combination to what we call a *Fourier series*

(4.42)
$$s_N(\tau) = \sum_{n=-N}^{N} \alpha_n e^{i2\pi n\nu\tau} \in \mathbb{C} \to \mathbb{C}_{\mathbb{Z}}^{2N+1} \leftrightarrow P_N$$

The function value is a complex scalar $s_N(\tau) \in \mathbb{C}$, we

while the functions $(s_N: \mathbb{R} \to \mathbb{C}) \in \mathbb{C}^{2N+1}_{\mathbb{Z}}$ constitutes a vector space P_N having the dimension dim $(P_N) = 2N+1$. Therefore, we have the writing form $s_N(\tau) \in \mathbb{C} \to \mathbb{C}_{\mathbb{Z}}^{2N+1}$ of the scalar which has its cause in this vector space.

and thus, the infinite Fourier series for a periodic function $s_{\infty}(\tau) = s_{\infty}(\tau + \frac{m}{\tau}) \in \mathbb{C}, \forall m \in \mathbb{Z}$

⁷² The designation term $\hat{u}_{\tau}(\omega)$ express that the indices τ represent the *basis choice of a function* of the argument parameter ω . complimented with $\hat{u}^{*}_{\omega}(\tau)$ express that the indices ω represent the basis choice of function of the argument parameter τ . ⁷³ For practice intuition we consider numerable index, pure mathematical reals are allowed, for background see § 1.7.8.2

$^{\odot}$	Jens Erfurt Andresen, M.Sc. NBI-UCPH,
------------	---------------------------------------

-133

For quotation reference use: ISBN-13: 978-8797246931

for $\nu, \tau \in \mathbb{R}$, where $\alpha_{-n} = \alpha_n^*$

We let $N \to \infty$ and thus get an infinite dimensional vector space $P^{\infty} \leftrightarrow \mathbb{C}_{\mathbb{Z}}^{\infty} = \bigoplus_{n=-\infty}^{\infty} \mathbb{C}_{n}^{1}$,