Geometric Critique

of Pure

Mathematical Reasoning

Edition

020-

 $\frac{122}{2}$

Research

on

th

 $\overline{\mathbf{O}}$

ρ

priori

of

Phys10

S

en

 \mathbf{v}

T

ldr

SO.

Q

- II. The Geometry of Physics – 4. The Linear Natural Space in Physics – 4.1. The Linear Algebraic Space –

The vector $a \in \mathbb{R}^2_{xy} = \mathbb{R}^1_x \bigoplus \mathbb{R}^1_y$ is thus represented by the two coordinate dimensions. The vectors $x = \lambda_x \hat{1}_x \in \mathbb{R}^1_x$ and $y = \lambda_y \hat{1}_y \in \mathbb{R}^1_y$ also belong to \mathbb{R}^2_{xy} , as $\mathbb{R}^1_x \subset \mathbb{R}^2_{xy}$ and $\mathbb{R}^1_y \subset \mathbb{R}^2_{xy}$. from the basis set $\{\hat{1}_x, \hat{1}_y\} \in \mathbb{R}^2_{xy}$, we form the vector space $\mathbb{R}^2_{xy} \sim (\mathbb{R}^2_{xy}, \mathbb{R})$ by the linear form $a = \lambda_x \hat{1}_x + \lambda_y \hat{1}_y \in \mathbb{R}^2_{xy}$ for $\lambda_x, \lambda_y \in \mathbb{R}$

over the real scalars and by that produce the real plane $\mathbb{R}_{xy}^2 \sim \{ a = \lambda_x \hat{1}_x + \lambda_y \hat{1}_y | \forall \lambda_x, \lambda_y \in \mathbb{R} \}.$ If we remove the Cartesian x, y indexing in \mathbb{R}^2_{xy} , we lose the claim $\hat{1}_x \perp \hat{1}_y$ and we can use free geometric basis vectors e.g., $\{\hat{1}_1, \hat{1}_2\}$, (where $\hat{1}_1 \angle \hat{1}_2$) and the linear form span a plane

 $\mathbb{R}^2 \sim \operatorname{span}\{\hat{1}_1, \hat{1}_2\} = \{x = \lambda_1 \hat{1}_1 + \lambda_2 \hat{1}_2 \mid \forall \lambda_1, \lambda_2 \in \mathbb{R}\},\$ dim(\mathbb{R}^2)=2. (4.28)

The *n* dimensional real vector space $V_n \sim \mathbb{R}^n \sim (\mathbb{R}^n, \mathbb{R}) \sim (V_n, \mathbb{R})$ we can from a basis set $\hat{1}_1, \dots \hat{1}_n$ span; $\mathbb{R}^n = \mathbb{R}^1_1 \oplus \dots \oplus \mathbb{R}^n_n = \operatorname{span}\{\hat{1}_1, \dots \hat{1}_n\}$ by a linear combination

 $x = \lambda_1 \hat{1}_1 + ... \lambda_n \hat{1}_n, x \in \mathbb{R}^n, \hat{1}_i \in \mathbb{R}^1_i \text{ and } \lambda_i \in \mathbb{R} \text{ for } i=1, ..., n, \text{ hence } \dim(\mathbb{R}^n) = n.$ (4.29)

It is here left to the reader to consider the situation in three dimensions, dim $(\mathbb{R}^3)=3$; $\mathbb{R}^3=\mathbb{R}^3_{xyz}=\mathbb{R}^1_x \bigoplus \mathbb{R}^1_y \bigoplus \mathbb{R}^1_z$, for a linear form, that spans $V_3 \sim (\mathbb{R}^3, \mathbb{R})$ from a linearly independent basis set $\{\hat{1}_x, \hat{1}_y, \hat{1}_z\}$, and a scalar set $(\lambda_x, \lambda_y, \lambda_z)$.

C Jens Erfurt Andresen, M.Sc. Physics, Denmark -130 Research on the a priori of Physics December 2022

4.1.3. The Vector Space of Complex Numbers As with the real numbers \mathbb{R} , we look at the complex numbers \mathbb{C} and form the corresponding vector space $\mathbb{C}^1 \sim (\mathbb{C}^1, \mathbb{C})$ over the complex number scalars \mathbb{C} . Again, it is the multiplying neutral scalar $1 \in \mathbb{C}$, that must form the natural basis for \mathbb{C}^1 But the scalar $1 \in \mathbb{C}$ has as for the real numbers no extension [1,1] = 0. The real interval $\overline{[0,1]} \subset \mathbb{R}$ spans only the real numbers \mathbb{R} . But a unit circle of a plane with a radius vector $\hat{1}_{c} \in \mathbb{C}^{1}$ will be a graphic object as an intuition option for a basis. Another vector \hat{i}_{c} perpendicular to $\hat{1}_{c}$, $\hat{i}_{c} \perp \hat{1}_{c}$ has further defined the unit circle plane in a complex symbiosis. For this unit circle, we choose e.g. $\hat{1}_{c} \leftarrow \hat{1}_{x}$, $\hat{i}_{c} \leftarrow \hat{1}_{y}$ from the Cartesian plane where the linear form $a = \lambda_x \hat{1}_x + \lambda_y \hat{1}_y \in \mathbb{R}^2_{xy}$ for $\lambda_x, \lambda_y \in \mathbb{R}$ span the plane. as above. Our intuition of a progressive orientated *direction* of rotation of this unit circle \odot plane complex $1_{\odot}^{\circ} \sim \hat{l}_{c} \perp \hat{l}_{c} \leftarrow \hat{e^{i0}}$ symbiotic unit circle $1_{\odot}^{\circ} \in \mathbb{C}_{1}^{1}$, radius magnitude $|1_{\odot}^{\circ}| = e^{0} = 1$, $1 \in \mathbb{C}_{2}^{1}$ This is an example of one complex basis vector $1^{\cup}_{0} \in \mathbb{C}^{1}_{1}$, forming the linear vector space *quality* of complex number plane as a linear form over the complex scalars C $z = \psi 1^{\circ}_{\bigcirc} \in \mathbb{C}^1_1$, where $z \in \mathbb{C}^1_1$ and the scalars $\psi \in \mathbb{C}$, $\mathbb{C}^1_1 = \operatorname{span}\{1^{\circ}_{\bigcirc}\}$, dim $(\mathbb{C}^1_1) = 1$. (4.30)We compare this complex linear form from a basis (4.30) with the Cartesian writing (4.27) $a = x + y = \lambda_x \hat{1}_x + \lambda_y \hat{1}_y \in \mathbb{R}^2_{xy},$ (4.31) $z = \psi 1_{\odot}^{\mho} = \lambda_{\widehat{1}_{c}} \widehat{1}_{c} + \lambda_{\widehat{l}_{c}} \widehat{i}_{c} \in \mathbb{C}_{1}^{1}, \quad \psi \in \mathbb{C}, \ \lambda_{\widehat{1}_{c}}, \lambda_{\widehat{l}_{c}} \in \mathbb{R} \quad \widehat{1}_{c}, \widehat{i}_{c} \in \mathbb{C}_{1}^{1} \quad \sim \mathbb{R}_{xy}^{2} = \mathbb{R}_{x}^{1} \oplus \mathbb{R}_{y}^{1}$ The complex scalars C are divided into components we call the real and imaginary parts $\operatorname{Re}(\psi) = \lambda_{\widehat{1}} \in \mathbb{R}_r = \operatorname{Re}(\mathbb{C}),$ $\operatorname{Im}(\psi) = \lambda_{\hat{i}} \in \mathbb{R}_{\nu} = \operatorname{Im}(\mathbb{C}),$ (4.32) $z = \psi 1_{\odot}^{\circ} = \operatorname{Re}(\psi) \hat{1}_{c} + \operatorname{Im}(\psi) \hat{i}_{c} \in \mathbb{C}_{1}^{1}$ (4.33)

the implicit nature of the Cartesian plane by our traditional intuition of a xy-plane. This heuristic assumption will be elaborated to a much richer plane geometric algebra later in chapter 5. An alternative description of the complex basis $\{1^{\emptyset}_{0}\}$ is the polar expression $\psi = \rho e^{i\varphi} \in \mathbb{C}$, where $\rho, \varphi \in \mathbb{R}$, are already treated in the chapter on the concept of time¹⁷⁰ and will be explored further later below. It is worth noting that the linear forms $z = \psi 1^{\circ}_{\circ} = \rho e^{i\varphi} 1^{\circ}_{\circ} \in \mathbb{C}^1_1$ for $\psi \in \mathbb{C}$ and $\rho, \varphi \in \mathbb{R}$ (4.34)do not produce a geometric line, but rather a plane through the dilation of a circle $\rho = |\psi|$, and a rotation $e^{i\varphi} \in \mathbb{C}$ through the circle, when we have given $\psi = \rho e^{i\varphi}$. For the complex basis vector, we have $|1_{\odot}^{\circ}| = |e^{i\varphi}| = 1$, with the speciality $|e^{i0}| = e^{i0} = 1 \in \mathbb{R}$ I also point out and claim, that although there is an isometry between the complex vector space and the real Cartesian plane $\mathbb{C}^1_1 \leftrightarrow \mathbb{R}^2_{xy}$, the substance (the system) of the complex vector space \mathbb{C}^1_1 containing more direct information about the structure of the plane than a Cartesian coordinate system of vector spaces $\mathbb{R}^2_{xy} = \mathbb{R}^1_x \bigoplus \mathbb{R}^1_y$. Some of the structure we hide in the term $1_{\odot}^{\circ} \sim \hat{i}_{\mathfrak{l}} \perp \hat{1}_{\mathfrak{l}}$, The (x,y) are full symmetric homogeneous coordinates, while the polar coordinates (ρ, φ) are inhomogeneous coordinates, where φ contain information from the rotation of the plane. This problem will be developed later below through the Geometric Algebra. The reader should consider the problem; what I mean by the heuristic definition $\{1^{\circ}_{\odot}\} \coloneqq \{e^{i\varphi}\} \sim \{\hat{i}_{c} \perp \hat{1}_{c}\} \sim \{\hat{1}_{c}\}\$ as the basis for the complex vector space

⁷⁰ Polar Coordinates (ρ, ϕ) referred to in sections 3.2.4.2 and later below in 5.3.2.2 and further

-131

© Jens Erfurt Andresen, M.Sc. NBI-UCPH,

For quotation reference use: ISBN-13: 978-8797246931

(4.27)

For quotation reference use: ISBN-13: 978-8797246931

- 4.1.3. The Vector Space of Complex Numbers - 4.1.2.2 Multiple Linear Spatial Dimensions -

- $\lambda_x, \lambda_y \in \mathbb{R} \qquad \hat{1}_x, \hat{1}_y \in \mathbb{R}^2_{xy}, \quad \hat{1}_x \in \mathbb{R}^1_x, \quad \hat{1}_y \in \mathbb{R}^1_y$

 - and writes
- We define for our intuition the complex plane by a basis set $\{1_{\circ}^{\circ}\} \leftrightarrow \{\hat{1}_{\circ}, \hat{i}_{\circ}\} \leftrightarrow \{\hat{1}_{\circ}, \hat{i}_{\circ}\}$ from