Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

The vector $a \in \mathbb{R}_{\mathrm{xy}}^{2}=\mathbb{R}_{\mathrm{x}}^{1} \oplus \mathbb{R}_{\mathrm{y}}^{1}$ is thus represented by the two coordinate dimensions. The vectors $x=\lambda_{\mathrm{x}} \hat{\mathrm{x}}_{\mathrm{x}} \in \mathbb{R}_{\mathrm{x}}^{1}$ and $y=\lambda_{\mathrm{y}} \hat{\mathrm{I}}_{\mathrm{y}} \in \mathbb{R}_{\mathrm{y}}^{1}$ also belong to $\mathbb{R}_{\mathrm{xy}}^{2}$, as $\mathbb{R}_{\mathrm{x}}^{1} \subset \mathbb{R}_{\mathrm{xy}}^{2}$ and $\mathbb{R}_{\mathrm{y}}^{1} \subset \mathbb{R}_{\mathrm{xy}}^{2}$. from the basis set $\left\{\hat{1}_{\mathrm{x}}, \hat{1}_{\mathrm{y}}\right\} \in \mathbb{R}_{\mathrm{xy}}^{2}$, we form the vector space $\mathbb{R}_{\mathrm{xy}}^{2} \sim\left(\mathbb{R}_{\mathrm{xy}}^{2}, \mathbb{R}\right)$ by the linear form

$$
a=\lambda_{x} \hat{1}_{x}+\lambda_{y} \hat{1}_{y} \in \mathbb{R}_{x y}^{2} \text { for } \lambda_{x}, \lambda_{y} \in \mathbb{R}
$$

over the real scalars and by that produce the real plane $\mathbb{R}_{x y}^{2} \sim\left\{a=\lambda_{\mathrm{x}} \hat{1}_{\mathrm{x}}+\lambda_{\mathrm{y}} \hat{1}_{\mathrm{y}} \mid \forall \lambda_{\mathrm{x}}, \lambda_{\mathrm{y}} \in \mathbb{R}\right\}$. If we remove the Cartesian x, y indexing in $\mathbb{R}_{\mathrm{xy}}^{2}$, we lose the claim $\hat{1}_{\mathrm{x}} \perp \hat{1}_{\mathrm{y}}$ and we can use free geometric basis vectors e.g., $\left\{\hat{1}_{1}, \hat{1}_{2}\right\}$, (where $\hat{1}_{1} \angle \hat{1}_{2}$) and the linear form span a plane

$$
\mathbb{R}^{2} \sim \operatorname{span}\left\{\hat{1}_{1}, \hat{1}_{2}\right\}=\left\{x=\lambda_{1} \hat{1}_{1}+\lambda_{2} \hat{1}_{2} \mid \forall \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}, \quad \operatorname{dim}\left(\mathbb{R}^{2}\right)=2 .
$$

The n dimensional real vector space $V_{n} \sim \mathbb{R}^{n} \sim\left(\mathbb{R}^{n}, \mathbb{R}\right) \sim\left(V_{n}, \mathbb{R}\right)$ we can from a basis set $\hat{1}_{1}, \ldots \hat{1}_{n}$ span $; \mathbb{R}^{n}=\mathbb{R}_{1}^{1} \oplus \ldots \oplus \mathbb{R}_{n}^{1}=\operatorname{span}\left\{\hat{1}_{1}, \ldots . \hat{1}_{n}\right\} \quad$ by a linear combination
$x=\lambda_{1} \hat{1}_{1}+\ldots \lambda_{n} \hat{1}_{n}, x \in \mathbb{R}^{n}, \quad \hat{1}_{i} \in \mathbb{R}_{i}^{1}$ and $\lambda_{i} \in \mathbb{R}$ for $i=1, \ldots n$, hence $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.
It is here left to the reader to consider the situation in three dimensions,
$\operatorname{dim}\left(\mathbb{R}^{3}\right)=3 ; \quad \mathbb{R}^{3}=\mathbb{R}_{\mathrm{xyz}}^{3}=\mathbb{R}_{x}^{1} \oplus \mathbb{R}_{y}^{1} \oplus \mathbb{R}_{z}^{1}$, for a linear form, that spans $V_{3} \sim\left(\mathbb{R}^{3}, \mathbb{R}\right)$ from a linearly independent basis set $\left\{\hat{1}_{x}, \hat{1}_{y}, \hat{1}_{z}\right\}$, and a scalar set $\left(\lambda_{x}, \lambda_{y}, \lambda_{z}\right)$.

4.1.3. The Vector Space of Complex Numbers

As with the real numbers \mathbb{R}, we look at the complex numbers \mathbb{C} and form the corresponding vector space $\mathbb{C}^{1} \sim\left(\mathbb{C}^{1}, \mathbb{C}\right)$ over the complex number scalars \mathbb{C}.
Again, it is the multiplying neutral scalar $1 \in \mathbb{C}$, that must form the natural basis for \mathbb{C}^{1} But the scalar $1 \in \mathbb{C}$ has as for the real numbers no extension $[1,1]=0$
The real interval $\overrightarrow{[0,1]} \subset \mathbb{R}$ spans only the real numbers $\overrightarrow{\mathbb{R}}$. But a unit circle of a plane with a radius vector $\widehat{1}_{\mathbb{C}} \in \mathbb{C}^{1}$ will be a graphic object as an intuition option for a basis.
Another vector $\widehat{i_{\mathbb{C}}}$ perpendicular to $\hat{1}_{\mathbb{C}}, \widehat{i}_{\mathbb{C}} \perp \widehat{1}_{\mathbb{C}}$ has further defined the unit circle plane in a complex symbiosis. For this unit circle, we choose e.g. $\hat{1}_{\mathbb{C}} \leftarrow \hat{1}_{\mathrm{x}}, \widehat{i}_{\mathbb{C}} \leftarrow \hat{1}_{\mathrm{y}}$ from the Cartesian plane where the linear form $a=\lambda_{x} \hat{1}_{x}+\lambda_{y} \hat{1}_{y} \in \mathbb{R}_{x y}^{2}$ for $\lambda_{x}, \lambda_{y} \in \mathbb{R}$ span the plane.
as above. Our intuition of a progressive orientated direction of rotation of this unit circle \odot plane complex $1 \odot \odot \sim \widehat{i_{\mathbb{C}}} \perp \widehat{1}_{\mathbb{C}} \leftarrow \widehat{e^{i 0}}$ symbiotic unit circle $1 \cup \odot \mathbb{C}_{1}^{1}$, radius magnitude $\left|1_{\odot}^{\cup}\right|=e^{0}=1,1 \in \mathbb{C}$ This is an example of one complex basis vector $1{ }_{\odot}^{U} \in \mathbb{C}_{1}^{1}$, forming the linear vector space quality of complex number plane as a linear form over the complex scalars \mathbb{C}
$z=\psi 1_{\odot}^{\cup} \quad \in \mathbb{C}_{1}^{1}, \quad$ where $z \in \mathbb{C}_{1}^{1} \quad$ and the scalars $\psi \in \mathbb{C}, \quad \mathbb{C}_{1}^{1}=\operatorname{span}\left\{1{ }_{\odot}^{\cup}\right\}, \quad \operatorname{dim}\left(\mathbb{C}_{1}^{1}\right)=1$.
We compare this complex linear form from a basis (4.30) with the Cartesian writing (4.27)
$a=x+y=\lambda_{x} \hat{1}_{x}+\lambda_{y} \hat{1}_{y} \in \mathbb{R}_{x y}^{2}, \quad \lambda_{x}, \lambda_{y} \in \mathbb{R} \quad \hat{1}_{x}, \hat{1}_{y} \in \mathbb{R}_{x y}^{2}, \quad \hat{1}_{x} \in \mathbb{R}_{x}^{1}, \hat{1}_{y} \in \mathbb{R}_{y}^{1}$

$$
z=\psi 1_{\odot}^{\cup}=\lambda_{\widehat{1}_{\mathbb{C}}} \hat{\mathbb{C}}_{\mathbb{C}}+\lambda_{i_{\mathbb{C}}} \widehat{\hat{i}_{\mathbb{C}}} \in \mathbb{C}_{1}^{1}, \quad \psi \in \mathbb{C}, \quad \lambda_{\hat{1}_{\mathbb{C}}}, \lambda_{\widehat{i_{\mathrm{C}}}} \in \mathbb{R} \quad \hat{1}_{\mathbb{C}}, \widehat{i_{\mathbb{C}}} \in \mathbb{C}_{1}^{1} \quad \sim \mathbb{R}_{\mathrm{xy}}^{2}=\mathbb{R}_{\mathrm{x}}^{1} \oplus \mathbb{R}_{\mathrm{y}}^{1}
$$

The complex scalars \mathbb{C} are divided into components we call the real and imaginary parts

$$
\operatorname{Re}(\psi)=\lambda_{\hat{1}} \in \mathbb{R}_{x}=\operatorname{Re}(\mathbb{C}), \quad \operatorname{Im}(\psi)=\lambda_{\imath} \in \mathbb{R}_{y}=\operatorname{Im}(\mathbb{C}), \quad \text { and writes }
$$

$$
z=\psi 1_{\odot}^{\cup}=\operatorname{Re}(\psi) \hat{1}_{\mathbb{C}}+\operatorname{Im}(\psi) \widehat{i_{\mathbb{C}}} \in \mathbb{C}_{1}^{1}
$$

We define for our intuition the complex plane by a basis set $\left\{1_{\odot}^{\cup}\right\} \leftrightarrow\left\{\hat{1}_{\mathbb{C}}, \widehat{i_{\mathbb{C}}}\right\} \leftrightarrow\left\{\hat{1}_{\mathrm{x}}, \hat{1}_{\mathrm{y}}\right\}$ from the implicit nature of the Cartesian plane by our traditional intuition of a $x y$-plane. This heuristic assumption will be elaborated to a much richer plane geometric algebra later in chapter 5.
An alternative description of the complex basis $\left\{1_{\odot}^{U}\right\}$ is the polar expression $\psi=\rho e^{i \varphi} \in \mathbb{C}$,
where $\rho, \varphi \in \mathbb{R}$, are already treated in the chapter on the concept of time ${ }^{170}$ and will be explored further later below. It is worth noting that the linear forms

(4.34)

$$
z=\psi 1_{\odot}^{\cup}=\rho e^{i \varphi} 1_{\odot}^{\cup} \quad \in \mathbb{C}_{1}^{1} \quad \text { for } \psi \in \mathbb{C} \quad \text { and } \quad \rho, \varphi \in \mathbb{R}
$$

do not produce a geometric line, but rather a plane through the dilation of a circle $\rho=|\psi|$, and a rotation $e^{i \varphi} \in \mathbb{C}$ through the circle, when we have given $\psi=\rho e^{i \varphi}$. For the complex basis vector, we have $\left|1_{\odot}^{\cup}\right|=\left|e^{i \varphi}\right|=1$, with the speciality $\left|e^{i 0}\right|=e^{i 0}=1 \in \mathbb{R}$ I also point out and claim, that although there is an isometry between the complex vector space and the real Cartesian plane $\mathbb{C}_{1}^{1} \leftrightarrow \mathbb{R}_{\mathrm{xy}}^{2}$, the substance (the system) of the complex vector space \mathbb{C}_{1}^{1} containing more direct information about the structure of the plane than a Cartesian coordinate system of vector spaces $\mathbb{R}_{\mathrm{xy}}^{2}=\mathbb{R}_{\mathrm{x}}^{1} \oplus \mathbb{R}_{\mathrm{y}}^{1}$. Some of the structure we hide in the term $1_{\odot}^{\cup} \sim \hat{i}_{\mathbb{C}} \perp \hat{1}_{\mathbb{C}}$, The (x, y) are full symmetric homogeneous coordinates, while the polar coordinates (ρ, φ) are inhomogeneous coordinates, where φ contain information from the rotation of the plane.
This problem will be developed later below through the Geometric Algebra.
The reader should consider the problem; what I mean by the heuristic definition
$\left\{1_{\odot}^{\cup}\right\}:=\left\{e^{i \varphi}\right\} \sim\left\{\widehat{i}_{\mathbb{C}} \perp \hat{1}_{\mathbb{C}}\right\} \sim\left\{\hat{1}_{\mathbb{C}}\right\} \quad$ as the basis for the complex vector space

${ }^{0}$ Polar Coordinates (ρ, ϕ) referred to in sections 3.2.4.2 and later below in 5.3.2.2 and further

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-879724693

