

### 4.1. The Linear Algebraic Space

### 4.1.1. The Abstract Linear Space, a Vector Space

Regardless of the geometric perception of the natural space in physics, we define mathematics from the concept of numbers for an abstract set of mathematic objects that make up the elements of what we called a vector space $V$. The concept of numbers shall meet the requirements for an algebraic scalar field $\mathbb{K},{ }^{159}$ e.g., the real numbers $\mathbb{R}$. ${ }^{160}$
The elements of the algebraic scalars are designated with the Greek letters $\alpha, \beta, \lambda \in \mathbb{K}$.
The elements of the space $V$ are called linear vectors if they full fill a so-called
linear additive algebra. These elements are here in the abstract mathematical case referred to as lowercase Latin letters $a, b, c \in V$
4.1.1.1. Algebra of a Linear Spaces

Generally, we define an arbitrary linear space $(V, \mathbb{K}) \sim V$ often called a vector space $V$ over scalars ${ }^{161} \mathbb{K}$. The linear space $V$ has an additive neutral element, the zero-vector $0 \in V$ For arbitrary elements $a, b, c \in V$, apply the following rules:
(4.1) $a+(b+c)=(a+b)+c$,
the associative law for addition
(4.2) $\quad a+b=b+a$
the commutative law for addition.
(4.3) $\exists 0 \in V: a+0=a$ for $\forall a \in V$,
the identical element of addition is the zero-vector 0 .
(4.4) $\quad \forall a \in V, \exists-a \in V \Rightarrow a+(-a)=0, \quad$ where $-a$ is the additive inverse of $a$
(4.5) $\alpha(\beta b)=(\alpha \beta) b$ for $\alpha, \beta \in \mathbb{K}$,
(4.6) $\quad 1 a=a$, where $1 \in \mathbb{K}$,
associative scalar multiplication, where $\mathbb{K}=\mathbb{Q}, \mathbb{R}, \mathbb{C}$. identity by multiplying by a neutral scalar 1 .
(4.7) $\quad \lambda(a+b)=\lambda a+\lambda b, \quad \lambda \in \mathbb{K}, \quad$ distributive scalar multiplication of vector addition.
(4.8) $\quad(\alpha+\beta) c=\alpha c+\beta c$, for $\alpha, \beta \in \mathbb{K}$, distributive scalar multiplication of scalar addition.
(4.9) $\quad \lambda a=a \lambda, \quad \lambda \in \mathbb{K}, \quad$ commutative multiplication by scalars. - And extra:
(4.10) $\quad$ Subtraction of vectors deducted as $a-b=a+(-b)$
(4.11) Division of a vector with a scalar deducted as $\quad \frac{a}{\alpha}=\frac{1}{\alpha} a \quad$ from scalar division.

A set $V$ (a quality) that meets the additive algebraic conditions (4.1)-(4.11) - we call a
linear space and this algebra a linear algebra. Such a linear space is often called a vector space, e.g., designated $V$. - These abstract linear vectors should not directly be confused with what we later below call for geometric vectors and Euclidean vectors, although these also perform the linear algebra (4.1)-(4.11)
4.1.1.2. The Dimensions of a Linear Algebra of a Linear Vector Space

Indexing with the natural numbers of vector elements: $a_{1}, a_{2}, \ldots, a_{i}, \ldots \in V$,
and the corresponding scalars: $\quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}, \ldots \in \mathbb{K}$
A linear space has dimension $n \in \mathbb{N}$ if there exists a set $a_{1} \ldots a_{n}$ of just $n$ different prober vectors $a_{i} \neq 0$, for $i=1 \ldots n$, that are linearly independent, i.e
$\lambda_{1} a_{1}+\cdots+\lambda_{i} a_{i}+\cdots+\lambda_{n} a_{n}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{i}=\cdots \lambda_{n}=0$, hence $\forall \lambda_{i}=0$ A maximal set $a_{1} \ldots a_{n}$ of linearly independent vectors then form the basis for $V_{n}$
${ }^{59}$ The original German name for an algebraic scalar field is Zahl-Körper, hence the name $\mathbb{K}$. To avoid misunderstandings when physicists use the word scalars in the plural the meaning is only one scalar field $\forall \alpha \in \mathbb{K}$. Therefore an algebraic scalar field consists only of one number body (Zahl-Korper). - If we use several qualitatively different dimensions of quantities, maybe we will use different scalar fields to manage these qualities.
We considered the real numbers $\mathbb{R}$ known to the reader. Then the scalars $\mathbb{K}=\mathbb{R}$ is well known as a mathematical field concept. ${ }^{101} \mathbb{K}$ is often omitted in $(V, \mathbb{K})$ and $V$ is the term for a vector space over an implicit scalar field $\mathbb{K}$, which is given by the context.
C Jens Erfurt Andresen, M.Sc. Physics, Denmark -124
For quotation reference use: ISBN-13: 978-8797246931

We then say the vector space $V_{n}$ has $n$ linearly independent dimensions. We write $\operatorname{dim}\left(V_{n}\right)=n, \quad$ or $\quad \operatorname{dim}\left(V_{n}, \mathbb{K}\right)=\operatorname{dim}_{\mathbb{K}}\left(V_{n}\right)=n$
Each vector $a \in V_{n}$ we will write as a linear combination of the basis set $a_{1} \ldots a_{n}$, as
(4.14) $\quad a=\alpha_{1} a_{1}+\cdots+\alpha_{i} a_{i}+\cdots+\alpha_{n} a_{n}, \quad$ where all $\alpha_{i} \in \mathbb{K}$.

The scalars $\alpha_{i} \in \mathbb{K}$ are called the coordinates of the vector $a$ from the basis set $\left\{a_{1} \ldots a_{n}\right\} \subset V_{n}$
This formula (4.14) produces what we call a linear span of the space $V_{n}=\operatorname{span}\left\{a_{1} \ldots a_{n}\right\}$, therefore, the term a linear space. ${ }^{162}$
Two proper vectors $a$ and $e$ in $\mathrm{V}_{n}$ are linearly dependent if there exists a scalar $\alpha \in \mathbb{K}$, so that $a=\alpha e$, that is $a+\lambda e=0 \Rightarrow \alpha=-\lambda \neq 0$. All vectors $a \in V_{n}$ which we can write in the form $a=\lambda e$ are said to belong to exactly one dimension $U_{1}$ in $V_{n}$, where $U_{1} \subseteq V_{n}$.
$U_{1}$ we call a 1-dimensional subspace in $V_{n}$. For any $k \in \mathbb{N}$, where $0<k \leq n$, there exist a linearly independent set of vectors $a_{i_{1}} \ldots a_{i_{k}}$, where $0<i_{1}<\ldots<i_{j}<\ldots<i_{k} \leq n$, for $j=1 \ldots k$, specially $a_{0}=0$. Then linear combination $u=v_{1} a_{i_{1}}+v_{2} a_{i_{2}}+\ldots+v_{k} a_{i_{k}}$, for $\forall v_{j} \in \mathbb{K}$ belong to a subspace $U_{k}$ of the linear space $V_{n}$, so that $u \in U_{k} \subseteq V_{n}$.
We say the subset $a_{i_{1}}, \ldots a_{i_{k}}$ spans the subspace $U_{k}$ and writes $U_{k}=\operatorname{span}\left\{a_{i_{1}}, \ldots a_{i_{k}}\right\}$
We noted that $\left(V_{n}, \mathbb{K}\right)$ always has $U_{0}=\{0\}$ and $V_{n}$ as subspaces
For a proper subspace, we have $U_{k} \subset V_{n}$, i.e., $0<k<n$.

### 4.1.1.3. Sum of Subspaces

Given two linearly independent spaces $U_{r}$ and $U_{s}$, we can form a direct sum $U_{r} \oplus U_{s}=V_{n}$, when $r+s=n . \quad U_{r}$ and $U_{s}$ are then subspaces of $V_{n}$
All basis set $a_{1}, \ldots a_{r}$ for $U_{r}$ and $a_{r+1}, \ldots a_{r+s}$ for $U_{s}$ shall apply to (4.12) in accordance with the total basis set $a_{1}, \ldots a_{r}, \ldots a_{n}$ for $V_{n}$
Do we have $n$ one-dimensional subspace $X_{1_{i}} \subseteq V_{n}$ each with indices $i=1 \ldots n$, we have $\underbrace{X_{1_{1}} \oplus \ldots X_{1} \oplus \ldots X_{1_{n}}}=V_{n}$, equivalent to the linear form (4.14) where $a \in V_{n}$, when $a_{i} \in X_{1_{i}}$.

We see that each dimension has its own 1-dimensional space, which altogether constitute a $n$-dimensional space. We say the linear form generate the linear space $V_{n}$ from the basis set $\left\{a_{1}, \ldots, a_{n}\right\}$ or span by the designation $V_{n}=\operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}$.
4.1.1.4. The Simplest Linear Space for a Quality of Physics

We look at the general linear space $(V, \mathbb{K}) \sim V$. The simplest version of a linear space is the space over the scalars $\mathbb{K}$ themselves when we write $\mathbb{K}^{1} \sim\left(\mathbb{K}^{1}, \mathbb{K}\right)$.
Here we will distinguish between the total subject of the scalars by the term $\mathbb{K}$ and the object for our intuition of the linear vector space $\mathbb{K}^{1}$.
The natural basis for $\mathbb{K}$ is the multiplicative neutral scalar $1 \in \mathbb{K}$
$\mathbb{K}$ has then the natural basis set $\{\hat{1}\}$, and linear form $\lambda=\lambda 1$ produces its own abstract linear space $\mathbb{K}$ as a scalar substance. The individual scalars $\lambda \in \mathbb{K}$ as their total set $\mathbb{K}$ has no form for extension in the natural world. From this I declare - a controversial ethic ${ }^{163}$

- a priori synthetic judgment: $\mathbb{K}$ has no epistemological intelligible recognisable dimension,
$\operatorname{Dim}(\mathbb{K})=0$, the pure scalars $\mathbb{K}$ has no vector dimension in our intuition!
Can we in contrast construct an objective basis vector that is the recognisable for our intuition, for the vector space $\mathbb{K}^{1}$, called $\hat{1} \in \mathbb{K}^{1}$, then we have a basis set $\{\hat{1}\}$ for $\left(\mathbb{K}^{1}, \mathbb{K}\right) \sim \mathbb{K}^{1}$ The 1 -dimensional linear form for objective space $\mathbb{K}^{1}$ is then
$a=\lambda \hat{1}$, where $a \in \mathbb{K}^{1}$, and $\lambda \in \mathbb{K}$, from the generator $\hat{1} \in \mathbb{K}^{1}$, with $\operatorname{dim}_{\mathbb{K}}\left(\mathbb{K}^{1}\right)=1$.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-125-\quad$ Volume I, - Edition 2-2020-22, - Revision 6, $\quad$ December 2022

