Geometric

Critique of Pure

Mathematical Reasoning

Edition

 \bigcirc

2020-

 \triangleright

 $\mathbf{\circ}$

lens

rfurt

Andr

S. G.S.

en

Research

on

th

 $\overline{\mathbf{O}}$

ρ

priori

of Physics

- I. . The Time in the Natural Space – 3. The Quantum Harmonic Oscillator – 3.6. The Cyclic Quantum Oscillator Idea –

3.6.1.3. The Spectrum in One Direction

naterial from hardback: ISBN-13: 978-8797246931, paperback: ISBN-13: 978-8797246948, Kindle and PDF-file: ISBN-13: 978-87972469

The idea is that all active energy linked to the concept of *subton* state modes provides a continuous *spectrum* of angular frequencies $\omega \in \mathbb{R}$ as a *proper finite*¹⁵² *quality* in physics.

Such a *spectrum* of the circle oscillators is complementarily related to a *direction FORWARD* with an associated development parameter $t \in \mathbb{R}$ as a growing *quantity*, as evidenced in all the above intuition and understanding.

Such a *direction* is indicated as a vector $\vec{\omega} \parallel \vec{\omega} = \vec{\omega}/\omega$, pointing into the future.

The vector $\hat{\vec{\omega}}$ is the internal auto-norm *direction*, hence $|\hat{\vec{\omega}}| \equiv 1 \Rightarrow \omega_{int} = 1 \Rightarrow \phi = t$, while the vector $\vec{\hat{\omega}}$ is the external normed *direction* for us, where we put $|\vec{\hat{\omega}}| \equiv 1 \Rightarrow \phi = \omega t$, with the external angular frequency *quantity* $\omega[\hat{\omega}], \omega \in \mathbb{R}$ relative to our norm $\hat{\omega} \equiv 1[\hat{\omega}]$ for the concept. The transformation from our norm to the autonomous norm (3.187) is $\vec{\omega} \leftarrow \parallel \rightarrow \omega \vec{\omega}$.

From our frequency standard $\hat{\omega} \equiv 1[\hat{\omega}]$ we can choose an appropriate reference frequency $\omega_c[\hat{\omega}]$ for the **spectrum** of our ensemble object.

We see the carrier generator ω_c as the reference source for the system chronometer $\{t_c\}$ $[\hat{\omega}^{-1}]$. For your intuition of a local *spectrum* chronometer time t_c to be counted as the developing parameter for the phase $\phi = \omega t_c$ of all angular frequencies $\forall \omega \in \mathbb{R}$ in

the *spectrum*, see (3.255) from (1.81) in section 1.7.7. and later II. 4.1.4.2. It is not t_c , that is the cause of the activity, but rather that *entity* Ψ that creates *subtons* including a carrier generator ω_c as a chronometer $\{t_c\}$.

A philosophical banality: The creation is the cause. Question: What *entities* Ψ creates in physics? (Temperature)

The phenomenon we conceptually represent is an *active spectrum* $\forall \Psi_{\vec{\omega}} \in \Psi$, wherein each angular frequency $|\vec{\omega}| = \omega$ is populated by *subtons* $\psi_{\pm \vec{\omega} \perp 0} \subseteq \Psi_{\vec{\omega}} \subset \Psi_{\omega}$ constituting an a priori basis for the *primary quality* we call development.

My main contention claim is that development has *direction*. (A synthetic judgement.) This *direction* goes through or together with a transversal plane propagating at the speed of light *c*. The development 'speed' depends solely on the angular frequency energy ω in the circle oscillator. Here in this intelligible crawl, we limit ourselves to **one**¹⁵³ common *direction* e_3 for all *subtons* in the *spectrum* of $\forall \omega \in \mathbb{R}$, given by $\mathbf{e}_3 = \vec{\omega} = \vec{\omega}/\omega = \vec{\omega}_c/\omega_c$ in the way that all $\forall \vec{\omega} \parallel \mathbf{e}_3$ and all the autonomous normed $\forall \vec{\omega} \parallel \vec{\omega}$ are called a *primary quality of first grade*.

We let the chronometer $\{t_c\}$, which gives the development parameter $t_c = \phi_c / \omega_c$ and measures out the angular carrier phase $\phi_c = \omega_c t_c$ by the carrier ω_c ; also measure out the extension $x_3 = ct_3$ of all in A created *subtons*

$$(3.285) \qquad {}^{A} |\psi_{+\vec{\omega}\perp\bigcirc}(\varphi)\rangle = {}^{A} \odot_{\perp\overrightarrow{\omega}} 2\tilde{r}(\rho) e^{\pm i\varphi} = \odot_{\perp\overrightarrow{\omega}} 2\tilde{r}(\rho) e^{\pm i\omega(t_{c,A})}$$

C Jens Erfurt Andresen, M.Sc. Physics, Denmark

for $\forall \rho \geq 0$, $\forall t_3 \in [0, t_{c,A}]$, and where $\varphi = \omega(t_{c,A} - t_3) + \theta = |\vec{\omega}|(t_{c,A} - t_3) + \theta$ for each angular frequency $\omega \in \mathbb{R}$ in the *spectrum*.

The extensions parameter $t_3 \in \{t_c\} \subset \mathbb{R}_+$ is of the same *quality* as the chronometer time $t_c[\widehat{\omega}^{-1}]$ and measured as a *quantity* $t_3[\hat{\omega}^{-1}]$ from this by the carrier frequency $\vec{\omega}_c[\hat{\omega}]$. The extension coordinate $x_3 = -ct_3$ is by this measured continuous from the *spectral* transmitter A. For each frequency in the *spectrum*, we write the beam extension in one *direction* e_3 as a macroscopic state mode, as a field W created in A of a certain amplitude

 5^{52} Proper finality is rooted in the problem of the ultraviolet catastrophe. We have the idea of Planck frequency 1.22 $\cdot 10^{28}$ eV as the limit. The most energetic gamma particle reported observed $16 \cdot 10^{12}$ eV. Opposite we have $\omega = 0 \Rightarrow$ eternity, therefore $\omega \neq 0$. ³ There is a myriad of different *directions*. Here we look only in one *direction*. It remains to a later chapter, what number of linearly independent *directions* we can find configuring natural space in physics.

> -118December 2022 Research on the a priori of Physics

For quotation reference use: ISBN-13: 978-8797246931

$$(3.286) \qquad |\psi_{\Sigma\pm\omega e_{3}\perp\odot}^{\mathrm{macro}}(t_{c}, x_{3})\rangle_{\mathrm{A}} \xrightarrow{\sim} W_{\pm\omega,\mathrm{A}}^{\mathrm{helix}}(t_{c}, x_{3}) = A_{\mathrm{A}}$$
$$= A_{\mathrm{A}}$$

The constant transmitting amplitude of this field has proportionality $A_A \sim \sqrt{N_A}$, since power is proportional to the number $N_A(\omega)$ of ω subtons created per radian $\phi_c = \omega_c t_c$ from the chronometer{ t_c }. The chronometer-independent field is written as $\tilde{q}(\omega, x_3) = A_A A_{loss}(x_3)$ or simply $\tilde{q}(\omega) = A_A$, that is as a function of the *direction* \mathbf{e}_3 ,

(3.287)
$$|\tilde{q}(\omega)|_{A,e_3}^2 = |W_{\pm\omega,A}^{\text{helix}}(t_c,0_3)|_{e_3}^2 = \hbar\omega N_{A,e_3}(t_c,0_3)|_{e_3}^2$$

This is the *power spectrum* from transmitter A. Here only in one *direction* \mathbf{e}_3 .

Then the variable power of a ray from A at one angular frequency ω can be assigned

(3.288)
$$P_{A,e_3}(\omega, t_c, x_3) = |\tilde{q}(\omega, t_c, x_3)|_{e_3}^2 = |W_{\pm\omega,A,e_3}^{helix}(t_c, x_3)|_{e_3}^2 = |W_$$

now be written short as $|\tilde{q}(\omega)| = \sqrt{\hbar |\omega| N_{\mathbf{e}_3}(\omega)}$.

We call the function $\tilde{q}(\omega) \in \mathbb{C}$ of $\omega \in \mathbb{R}$ the complex amplitude *spectrum*.¹⁵⁴ Based on the conceptual idea of the inverse Fourier integration of this *spectrum* we get the complex quantity $q(t) = \int_{\mathbb{D}} \tilde{q}(\omega) e^{i\omega t} d\omega$, which is an \mathbb{C} integrable function¹⁵⁵ dependent on a development parameter $t \in \{t_c\} [\hat{\omega}^{-1}]$ of the same *quality* and norm $\hat{\omega} \equiv 1 [\hat{\omega}]$ as the chronometer. Complementary to this, we conclude: If an objective *entity* in physics is attributed a feature *quantity* $q(t) \in \mathbb{C}$, that is integrable and dependent on the development parameter $t \in \mathbb{R}$, this *quantity* can be dissolved in circle oscillators and integrated over time into a complex Fourier spectrum

(3.289)
$$\widetilde{q}(\omega) = \frac{1}{2\pi} \int_{\mathbb{R}} q(t) e^{-i\omega t} d\tau,$$

and these circle oscillators propagate into the future as what we now call subtons.

3.6.2. The Development of Entities in Physics

Transformed *entities* Ψ_{A} we intuit as complex *quantities* $q_{A}(t) \in \mathbb{C}$, that are interpreted as functions values of a development parameter $t \in \mathbb{R}$ with the *quality* norm unit $[\widehat{\omega}^{-1}]$ for this *quantity*. These are generated chronologically in relation to the synchronism of a well-defined carrier time $\{t_c \in \mathbb{R}\}$, in which the carrier circle oscillator has an angular frequency $\omega_c[\hat{\omega}]$, as a real numerical value $\omega_c \in \mathbb{R}$, which refers to the angular reference frequency $\hat{\omega} \equiv 1[\hat{\omega}]$, from our norm cyclic oscillator clock.

Above, we have stated that the carrier oscillator generates a phase angle $\phi_c = \omega_c t_c$ that directly carries the development parameter $t_c = \phi_c / \omega_c$ for the chronometer $\{t_c\}$. For the development parameter of the *entity*, *quantities* q(t) are required $t \in \{t_c\}[\widehat{\omega}^{-1}]^{156}$. By integrating this quantity of all development parameter values, we can form an *amplitude* spectrum of harmonic oscillators $\tilde{q}_{\rm A}(\omega) = \frac{1}{2\pi} \int_{\mathbb{R}} q_{\rm A}(t) e^{-i\omega t} d\tau$.

⁴ Mistakenly, this has often been called 'power spectrum', but contrary in (3.288) the power spectrum is $|\tilde{q}(\omega)|^2$. Technically this is no problem, due to the most often used logarithmic decibel scale defined by $P = 10 \log(I/I_0) = 20 \log(A/A_0)$ for the relative Intensities or Amplitudes. Therefore, the relative ratios are often called the Power Spectrum for the Fourier Amplitudes. ⁵⁵ These complex integrable functions in Fourier transformations are described in section 1.7.7 and later below II. 4.1.4.2. ¹⁵⁶ A norm unit $[\hat{\omega}^{-1}]$ may be seconds [s], and another could be $[eV^{-1}]$. If you cannot find a suitable carrier norm reference it can be based on the idea $\omega_c = \hat{\omega}$. But often $\hat{\omega}$ is only a theoretical reference, therefore one needs a real physical carrier reference whose angular frequency, thus defining $\hat{\omega} = \omega_c / \omega_{c-\text{definition}} = 1$. © Jens Erfurt Andresen, M.Sc. NBI-UCPH, - 119

um in One Direction –

- ${}_{\mathrm{A}}A_{\mathrm{loss}}(x_3) \left(e^{\pm i(\omega t_c + k_3 x_3)} \right)_{\mathbf{e}_3}$ ${}_{\mathbf{A}}\mathbf{A}_{\mathbf{loss}}(ct_3)\left(e^{\pm i\omega(t_c-t_3)}\right)_{\mathbf{e}_3}, \quad k_3=\omega/c.$
- $(\omega) = I_A(\omega, \mathbf{e}_3)$, for the intensity.

- $_{c}, x_{3}) \Big|^{2} = \hbar |\omega| N_{A,e_{2}}(\omega, t_{c}) \hbar \omega A_{loss}^{2}(x_{3})$
- The chronometer constant, but frequency-dependent field amplitude from the transmitter A can