Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

Especially we want to write electromagnetic dipole radiation consisting of many $n=1,2 \ldots N$ double $_{ \pm}$subtons the effect of the phase angles $\theta_{n}=\theta_{d}+\Delta \theta_{n}$ where any phase noise can be considered negligible mean $\overline{\Delta \theta_{n}} \approx 0 \Rightarrow \theta_{d} \approx \overline{\theta_{n}}$. Hence, that θ_{d} represents the angular direction in space of the generating dipoles ${ }^{126}$ as a macroscopic common.
The intuition of (3.249) with polarization direction $\mathbf{e}_{\theta_{d}} \| \odot \perp \mathbf{e}_{3}$ is then
(3.250) $\quad\left|\psi_{\Sigma^{v} \pm \odot \perp \omega e_{3}}^{\overrightarrow{2}}(t)\right\rangle_{\mathbf{e}_{\theta_{d}}}=A N 4 \tilde{r}(\rho) \odot \cos \left(\omega t+\theta_{d}\right)_{\perp e_{3}}$, for $\forall \rho \geq 0$ and $A N=1 / 2$, as $\langle\psi \mid \psi\rangle=1$.

This is apparently in line with a traditional way of describing linear polarization, but we must note that the paired quantum mechanical angles are the same θ_{d} as a macroscopics angular direction in space, resulting from the simultaneous creation of (3.250) as a macroscopic cause.
The direction of the causative $\mathbf{e}_{\theta_{d}}$ (a oscillating dipole) controls the linear polarization of the macroscopic field with the amplitude $E_{a} \in \mathbb{R}$, the power $\left|E_{a}\right|^{2}$ (energy flow) is proportional to the number N of subtons, that is, according to (3.236) $\left|E_{a}\right| \sim \sqrt{N}$, and we call the field amplitude of one subton pair for E_{d}, this field is then written ${ }^{127}$
(3.251) $\quad \vec{E}=E \mathbf{e}_{\theta_{d}}=E_{a} \cos (\omega t) \mathbf{e}_{\theta_{d}}=\sqrt{N} E_{d} 2 \cos (\omega t) \mathbf{e}_{\theta_{d}}, \quad \perp \mathbf{e}_{3}$.

The common quantum pairs of the phase angle difference are now omitted and hidden in the dipole direction $\mathbf{e}_{\theta_{d}}$. The physical linear field polarisation lies in that direction $\mathbf{e}_{\theta_{d}}$ is multiplied by a real number $\sqrt{N} E_{d} 2 \cos (\omega t) \in \mathbb{R}$.
The individual quantum phases of the ensemble (3.250) is now stored in the unitary circle group $\odot=\left\{U_{\theta}: \theta \rightarrow e^{i \theta} \in U(1) \mid \forall \theta \in \mathbb{R}\right\}$, that here includes the transversal idea in our intuition.(3.250)(3.229)(3.232)(3.222)
All subtons is created in one direction according to the motto (3.222). This requires our intuition for the form of development $\odot \perp \mathbf{e}_{3} \rightarrow \odot \perp \omega \mathbf{e}_{3} \rightarrow \odot \perp \omega t \mathbf{e}_{3} \sim \odot \perp \phi \mathbf{e}_{3} \rightarrow \odot \perp x_{3} \mathbf{e}_{3}$
that the direction $\widehat{\hat{\omega}} \| \mathbf{e}_{3}$ is preserved into the future, given from the past.
Looking at a particular 'place ${ }^{128}$ in 'time' $x_{3}=c t_{3}$ along the line $x_{3} \mathbf{e}_{3}$, we get
(3.252) $\vec{E}\left(t, x_{3}\right)=\sqrt{N} E_{d} 2 \cos \left(\omega t-\frac{\omega x_{3}}{c}\right) \mathbf{e}_{\theta_{d}}=\sqrt{N} E_{d} 2 \cos \left(\omega t-k_{3} x_{3}\right) \mathbf{e}_{\theta_{d}}, \quad k_{3}=\frac{\omega}{c}, \quad \mathbf{e}_{\theta_{d}} \perp \mathbf{e}_{3}$

This is the traditional formula for a transverse field $\vec{E}\left(t, x_{3}\right)_{\| e_{\theta_{d}} \perp e_{3}}$ propagating along the
direction \mathbf{e}_{3}. For this intuition of the amplitude of the field, it is again important to note, that this is essentially different from the transversal extension of the subton beam that is normalized by $\langle\psi \mid \psi\rangle=1$ to $A N=1 / 2$ according to (3.250) from (3.188). Therefore, intuited as a macroscopic beam with a transversal radius of the order ${ }^{129}$
(3.253) $\quad \stackrel{\ominus}{r}(\vec{\omega})=\frac{c}{\omega}=\frac{\lambda}{2 \pi}$

The 'Beam' created from one point in one direction ${ }^{130}$ is by definition in this intuition straight as a rectitude line ${ }^{131}$ with this 'thickness'. (A laser beam, which aperture radius $\geqq \frac{\lambda}{2 \pi}$ of cause).
We see (3.251) a signal field that can be modulated by changing the number N of simultaneously created double \pm subtons. This modulation is called amplitude modulation, in that it changes field amplitude $E_{a} \propto \sqrt{N}$, but be aware that it does not change the 'thickness' of the beam.
${ }^{126}$ A dipole can be considered a linear harmonic oscillator (in one dimension). It has the polarization direction along this in the transversal plane with the radiation direction perpendicular to this plane.
${ }_{127}$ Here, factor 2 is retained even though it could be hidden in the field factor E_{d}; to indicate dipole parity opposition + and ${ }^{128}$ In the substance of this autonomous ontology a place is found by counting radians along the development axis, see Figure 3.13. ${ }^{129}$ I have previously (3.194) symbolised the transversal distribution as ©
This restriction is because we only involve propagation in one direction in all these deliberations.
The only way to verify whether a ruler is rectilinear is to aim with light along its egg.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark -106- Research on the a priori of Physics

3.5. Modulation of a Quantum Mechanical Field

3.5.1. The Macroscopic Modulation

Here I will draw attention to what we call modulation, as we know it from electromagnetic wave communications by radio, in cables or optic fibres.
In the concept of modulation, there are two vastly different basic ideas behind the types of macroscopic modulation: amplitude modulation, and phase modulation.
In the formula (3.251) the 'radio' modulation is not shown explicitly, this is implicitly included in the number quantity N for the amplitude \sqrt{N}, and the phase angle quantity $\phi_{m}=\omega t$ The phase modulation is the quantum phase angle divided into two quantities the angular frequency ω and development parameter t. As we have seen through Fourier integral theory in section 1.7.7-1.7.8 these two quantities complement each other.
A modulated quantity as a function of the development parameter
$q_{m}(t)=\int_{\mathbb{R}} \tilde{q}_{m}(\omega) e^{-i \omega t} d \omega$
is complemented by a modulated spectrum as an amplitude function
(3.255) $\quad \tilde{q}_{m}(\omega)=\frac{1}{2 \pi} \int_{\overrightarrow{\mathbb{R}}} q_{m}(t) e^{i \omega t} d t$.

To make the concept of modulation interesting for our conceptual world of information the modulation will have to be dependent on the evolution of the concept of time.
This is intuited as a modulation function $m\left(t_{m}\right)$, which depends on the modulation development parameter t_{m}; by which the angular frequency spectrum $\widetilde{m}\left(t_{m}, \omega\right)$ as a function of ω also will depend on this development.
What does this look like in a conceptual world of subtons?
We look at a spectrum of angular frequencies ω and thus at subtons with different eigenfrequency energies $\hbar \omega$ and as a consequence of this different phase angles $\phi=\omega t \in \mathbb{R}$. These quantities, which for us define a spectrum of a full ensemble of subtons, are external to each of the individual subtons.

Here, the eigen frequency for each subton has its own autonomy internal reference $\widehat{\vec{\omega}}$
We remember that the subton auto-norm is $|\widehat{\widehat{\omega}}| \equiv 1$ [radian], so the quantum phase angle performs the inner development parameter $\phi=|\widehat{\vec{\omega}}| t_{a}=t_{a}=|\widehat{\vec{\omega}}| \phi=\phi . \quad$ But In the modulation of the external spectrum, the intuition of the concept permits $\omega \in \mathbb{R}$ as a variable quantity. Relative to this variable input frequency ω we introduce the idea of an external constant carrier frequency ω_{c} as a reference for $\forall \omega \in \mathbb{R}$ in the spectrum. The external reference for this carrier is the external reference clock $[\widehat{\omega}]$, where $|\widehat{\omega}| \equiv 1$. To take the spectrum as a self-consistent ensemble entity Ψ we have to take all the given subton frequencies as internal conserved in their existence $\forall \Psi_{\omega} \in \Psi$ relative to the carrier.
A constant relative measure ω / ω_{c} in this spectrum Ψ

3.5.2. The Carrier

Are there physical entities that possess a quality concerning a constant quantity that could serve as a reference measuring information in a spectrum? As an everlasting constant internal reference of a signal, we introduce the idea of a carrier of angular frequency $\omega_{c} \in \mathbb{R}$, in which real quantity $\omega_{c}[\widehat{\omega}]$ is given relative to the external reference $|\widehat{\omega}| \equiv 1[\widehat{\omega}]$
For this carrier ω_{c} we also assign the idea of a development parameter t_{c} for the carrier. The idea is, an ideal eternal carrier wave $\overrightarrow{c^{\boldsymbol{c}}}$ is formed by an external intuition of a transversal plane wave as shown in Figure 3.13, with a constant internal carrier frequency ω_{c} relative to an externally referenced $|\widehat{\omega}| \equiv 1[\widehat{\omega}]$, and preferred in one direction $\forall \widehat{\vec{\omega}} \| \mathbf{e}_{3}$ for all carrier subtons with the transversal circle of rotation $\odot \perp \mathbf{e}_{3}$ of the angular frequency vector
(C) Jens Erfurt Andresen, M.Sc. NBI-UCPH

For quotation reference use: ISBN-13: 978-8797246931 For quotation reference use: ISBN-13: 978-8797246931

