Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

This double excitation of \pm subtons $\omega_{+}=-\omega_{-}$is equivalent to

$$
{ }^{\mathrm{AB}} \Psi_{\omega}^{\overrightarrow{2}}={ }^{\mathrm{A} \mathrm{~B}} \Psi_{\omega}^{\text {linear }}={ }^{\mathrm{AB}} \Psi_{+\omega}+{ }^{\mathrm{AB}} \Psi_{-\omega}=
$$

(3.244) $\quad{ }^{\mathrm{AB}} \psi_{\omega}^{\overrightarrow{2}} \sim\left|\psi_{\odot_{\theta^{\prime} \perp \mathbf{e}_{3}}}^{\overrightarrow{2}}(t)\right\rangle=2 \tilde{r}(\rho) \cos \left(\omega t+\theta^{\prime}\right)_{\perp \mathrm{e}_{3}}$, for $\forall \rho \geq 0, \quad \phi=\omega t+\theta^{\prime} \in \mathbb{R}, \forall \theta^{\prime} \in[0,2 \pi[$.
$\vec{\omega}$ as the object of intuition is an ontological concept referring to Figure 3.13 as an illustration of the two \pm subtons ${ }^{\mathrm{AB}} \Psi_{ \pm \hat{\omega}}$ simultaneously created in A with the phase angle difference θ^{\prime}, and after that both annihilated in B at the same time with the preserved angular phase difference θ^{\prime}. This intuition is viewed as an information transfer of a real scalar quantity θ^{\prime} of a transversal angular quality transferred in that direction $\widehat{\vec{\omega} \| \overrightarrow{A B}}$.
We call ${ }^{\mathrm{AB}} \Psi_{\omega}^{\overrightarrow{2}}$ for a double e subton. I suggest that we also call it a double-photon, in that its quantum energy $\hbar 2 \omega$ is a linear combination (superposition) into a linear polarized state, that is also a solution for the linear harmonic oscillator
The autonomous quantum $2=2|\widehat{\hat{\omega}}|$ represents also power and momentum $\overrightarrow{\mathbf{2}}=2 \widehat{\vec{\omega}}$ while the

$$
=A 2 \tilde{r}(\rho) \odot\left(\sum_{n=1}^{N} 2 \cos \left(\omega t+\theta_{n}\right)\right)_{\perp e_{3}}, \text { for } \forall \rho \geq 0, \quad \phi_{n}=\omega t+\theta_{n} \text {, }
$$ resulting angular momentum is $\widehat{\vec{\omega}}-\widehat{\bar{\omega}}=\vec{L}_{3}^{+}+\vec{L}_{3}^{-}=0$.

The double \pm subton ${ }^{\mathrm{AB}} \Psi_{\omega}^{\overrightarrow{2}}$ endowed by creation in A one state-mode energy $\hbar 2 \omega$ and handing back this energy in the annihilation B. The same applies to its momentum, where the recoil $-\frac{\hbar}{c} 2 \omega_{2} \mathbf{e}_{3}$ in A creates a momentum $\frac{\hbar}{c} 2 \omega_{2} \mathbf{e}_{3}$ which is delivered in B.
It is important here to note that $\hbar 2 \omega$ is the frequency energy of the state-mode, not a portable energy (external mass $=0$ of photons subtons). The state-mode energy transfer corresponding to the transfer of a momentum which results in an effect. This flow of energy (power) is expressed with the autonomous time-frequency reference $|\widehat{\bar{\omega}}| \equiv 1$ [radian]
(3.245) $\quad \vec{\omega}_{2 \text { superposition }} /|\widehat{\hat{\omega}}|=\frac{2 \widehat{\omega}}{|\hat{\omega}|}=2 \widehat{\vec{\omega}}=\overrightarrow{\mathbf{2}}$
and the flow of energy expressed relative to an external time-frequency reference $|\widehat{\omega}|=1[\widehat{\omega}]$
$\hbar \omega_{2} \mathbf{e}_{3} /|\widehat{\omega}|=\hbar 2 \omega \widehat{\omega} \mathbf{e}_{3} /|\widehat{\omega}|=\hbar 2 \omega \mathbf{e}_{3}[\widehat{\omega}]$, where $\quad\left|\mathbf{e}_{3}\right|=1\left[\widehat{\omega}^{-1}\right]$.
for the subton + pair ${ }^{\mathrm{AB}} \Psi_{\omega}^{\overrightarrow{2}} \sim{ }^{\mathrm{AB}} \Psi_{+\omega}+{ }^{\mathrm{AB}} \Psi_{-\omega}$ is one linearly polarized quantum $\hbar 2 \omega$.
In addition to this, it is the real quantity the phase angle relationship of the subton pair $\left.\theta^{\prime}=\Varangle{ }^{A B} \Psi_{+\omega}{ }^{,}{ }^{A B} \Psi_{-\omega}\right)$, which carries the angular information from A to B.
3.4.5.2. One double \pm subton Interpreted as a Progressive Wave

For the double ${ }_{ \pm}$subton applies $N_{+}=1$ and $N_{-}=1$. We formulated now as in (3.238) alternative super-positions of the difference between creations $a_{\odot+\omega}^{\dagger}$ and $a_{\odot-\omega}^{\dagger}$

$$
\left|\psi_{\Sigma^{2} \pm \odot \perp \bar{\omega}}(t)\right\rangle= \pm \frac{1}{2}\left(a_{\odot+\omega}^{\dagger}-a_{\odot-\omega}^{\dagger}\right)_{\perp \hat{\omega}}|0,0\rangle= \pm \odot \tilde{r}(\rho)\left(e^{+i \phi}-e^{-i \phi}\right)_{\perp \hat{\bar{\omega}}}
$$

$$
= \pm \odot \tilde{r}(\rho)\left(e^{+i\left(\omega t+\theta^{\prime}\right)}-e^{-i\left(\omega t+\theta^{\prime}\right)}\right)_{\perp \widehat{\omega}}= \pm i \odot 2 \tilde{r}(\rho) \sin \left(\omega t+\theta^{\prime}\right)_{\perp \widehat{\omega}},
$$

for $\forall \rho \geq 0$, and $\phi=\omega t+\theta^{\prime}$
From here we now write the progressive extension on the form as in (3.223) and (3.238)
$\left|\psi_{\Sigma^{2} \pm \odot \perp \hat{\bar{\omega}}}(t)\right\rangle$
$\leftrightarrow\binom{ \pm \tilde{r}(\rho)\left(e^{+i\left(\omega t+\theta^{\prime}+\theta\right)}-e^{-i\left(\omega t+\theta^{\prime}-\theta\right)}\right)}{-|\omega t|}_{\hat{\bar{\omega}}}=\binom{ \pm i \tilde{r}(\rho) 2 \sin \left(\phi+\theta^{\prime}+\theta\right)}{-|\phi|}_{\hat{\bar{\omega}}}$

$$
\leftrightarrow\left(\begin{array}{c}
\frac{\pi}{2} \\
\odot \tilde{r}(\rho) 2 \sin \left(\phi \pm \frac{\pi}{2}+\theta^{\prime}\right) \\
-\left|\phi \pm \frac{\pi}{2}\right|
\end{array}\right)_{\widehat{\bar{\omega}}} \leftrightarrow\binom{0 \odot \tilde{r}(\rho) 2 \cos \left(\phi+\theta^{\prime}\right)}{-|\phi|}_{\widehat{\bar{\omega}}}, \quad \text { for } \forall \rho \geq 0
$$

We see that different combinations of $\pm \psi_{+}, \pm \psi_{-}$in the double \pmsubton superposition only provide \odot a symmetry invariant $\frac{\pi}{2}$ displacement along the helicity, that is, both in A and B, and therefore do no change to the information contained in $\left|\psi_{\Sigma^{2} \pm \odot \perp \hat{\bar{\omega}}}(t)\right\rangle$.
Therefore, we count (3.238) \rightarrow (3.244) as a sufficient description of the double \pm subton. ${ }^{123}$
3.4.5.3. Superposition of Linear Polarized double \pm subtons

We write the superposition of $N=N_{+}=N_{-}$double $\boldsymbol{e}_{ \pm}$subtons states (3.238) $\left|\psi_{\Sigma^{2}+\odot \perp \widehat{\omega}}(t)\right\rangle$ created simultaneously with N pairs of angular phases $\theta_{n}=\theta_{n^{+}}-\theta_{n^{-}}$, with $n=1, \ldots N$, where the desire is that $n=n^{+}=n^{-}$; and created from a single angular frequency $\omega[\widehat{\omega}]=\omega_{+}=-\omega_{-}$equal for all $a_{\odot+\omega}^{\dagger}$ and all $a_{\odot-\omega}^{\dagger}$ as well as all combinations $a_{\odot+\omega}^{\dagger}+a_{\odot-\omega}^{\dagger}$

$$
\left|\psi_{\Sigma^{n} \pm \odot \perp \omega e_{3}}^{\overrightarrow{2}}(t)\right\rangle=A N\left(a_{\odot+\omega}^{\dagger}+a_{\odot-\omega}^{\dagger}\right)_{\perp \mathbf{e}_{3}}|0,0\rangle=A 2 \tilde{r}(\rho) \odot\left(\sum_{n=1}^{N}\left(e^{+i\left(\omega t+\theta_{n}\right)}+e^{-i\left(\omega t+\theta_{n}\right)}\right)\right)_{\perp \mathrm{e}_{3}}
$$

We try approaching this as a coded signal containing information, in between each subton + pair. The impossibility here by reading at the annihilation B is that all the single simultaneous excited N_{+}subtons + respectively N_{-}subtons- are identically indistinguishable, with individual subton phase angles $\theta_{n^{+}}$respectively $\theta_{n^{-}}$, may be combined in any N ! manner $\theta_{n^{+} n^{-}}=\theta_{n^{+}}-\theta_{n^{-}}$, where $n^{+}=1, \ldots N_{+}$, and $n^{-}=1, \ldots N_{-}$
The idea of simultaneous useful modulation of double $\boldsymbol{H}_{ \pm}$subtons in a monochromatic transversal plane wave (in one direction \mathbf{e}_{3}) ${ }^{124}$ is thus an illusion. All phases are mutually indecipherable. Only if we can separate the individual double $\boldsymbol{e}_{ \pm} \boldsymbol{u b t o n}_{n}$ e.g. at different frequency energies ω_{k}, or by a causal angular displacement of the phases $\phi_{m}=\omega t_{m}$, in which the development parameter has a sequential order of $t_{m} \widetilde{>} t_{m-1}+2 \pi /|\omega|$ with $\phi_{m-1}+2 \pi \widetilde{<} \phi_{m}$, a transmission with a sequential subsequence reception of the individual phase angle signals $\theta_{m, k} \in[0,2 \pi[$ from each double d $_{ \pm}$subton $_{m, k}$ that can be individually read in B. More about t_{m} modulation below.
Thus, only single double \pm subtons which can be modulated with their own quantum mechanical angular phase θ^{\prime} of (3.238) to be read individually. The idea linear polarization produces relative angular information in the creation of a double + subton of event A , which is then transferred to the annihilation of the double ${ }_{ \pm}$subton in event B.
I would like to point out, if we can modulate one single double $\boldsymbol{e}_{\boldsymbol{s}}$ subton couple with a phase angle difference θ^{\prime} and read them again without being disturbed by thermal noise, we can phase modulate the transversal plane of a monochromatic plane wave at one single frequency $\omega_{k} .{ }^{125}$ The problem is, that the modulation is quantised to a single entity double $\boldsymbol{e}_{ \pm}$subton ${ }^{\mathrm{AB}} \Psi_{\omega_{k}}^{\overrightarrow{2}}$ We ask, is this an indivisible elementary particle or merely a composite particle? For optical photons, room temperature is so low that single double $\boldsymbol{e}_{ \pm}$subtons pair can be detected. The ensemble (3.249) cannot be quantum coded because of simultaneous individual phase detection confusion in the permutation between the identical individualities of respectively + and - rotation orientations. All these individual phases are mutually indecipherable. Superposition of the linearly polarized double \pm subtons has relevance to the concept of linearly polarized light, as it is an equal number of subtons of positive and negative helicity.

${ }^{123}$ The reader, that will investigate this further can study Hilbert couples and transformation. (I do not have the strength.)

 ${ }^{124}$ This view with a transversal plane wave through one direction is also called a transmission channel.${ }^{25}$ One single double ${ }_{ \pm}$subton is by definition given at one frequency. Opposite this, by ordinary radio technique
(which for many years has been my livelihood) we used to say that phase modulation is synonymous with frequency modulation in contrast to the monochromatic idea. But by radio modulation and communications, the temperatures are so high that single photons cannot be registered individually and the phase of the double \pm subton cannot be read. ($\hbar \omega \ll k T$). So, in traditional radio wave communication neither this nor the monochromatic idea has relevance.
Opposite for light double \pm photons $\hbar \omega>k T$.
(C) Jens Erfurt Andresen, M.Sc. NBI-UCPH,

For quotation reference use: ISBN-13: 978-8797246931

