Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

The light measures the depth of the space as the 'time' the development parameter is underway. The angular phase development in the light provides in its substance the depth into the past from the light emitted (created) to the received (annihilated). In principle, the subton counts the numbers of oscillations $|\phi|=\left|\phi_{\mathrm{A}}-\phi_{\mathrm{B}}\right|$ backward in the past and it is this quantity, that is invariant against a Lorentz gauge transformation. The rationale is that annihilation is autonomous and therefore always immediate local in measuring the angular phase development joint to the creation of the subton. (The internal development is a null curve interpreted by the external, see chapter III. 7.) Here the subton ${ }^{\mathrm{AB}} \Psi_{ \pm \hat{\bar{\omega}}}{\stackrel{\mathrm{B}}{ }{ }^{\mathrm{B}} a_{\odot \pm \bar{\omega}}{ }^{\mathrm{A}} a_{\odot+\grave{\bar{\omega}}}^{\dagger}|0,0\rangle \text { defines the invariant quantity }|\phi|=\left|\phi_{\mathrm{A}}-\phi_{\mathrm{B}}\right|}$ and measurement at event B can by filtration determine the direction $\widehat{\vec{\omega}} \sim \omega \vec{\omega}$ and frequency $|\omega|$. This ω depends on the observer reference frequency [$\widehat{\omega}$], (and this reference can depend on a Lorentz transformation) just like the extension measurement

$$
{ }^{\mathrm{AB}} x_{3}=c\left(t_{A}-t_{B}\right)=c\left|\phi_{A}-\phi_{B}\right| /|\omega|
$$

Now, we have examined the possibility of the idea of the quantum harmonic oscillator with angular momentum (the circle oscillator) to create a FORWARD direction in space-time A through the transversal plane direction

Before we proceed to the description of a possible interpretation of space, we will elaborate more on the quantum development phase angle and parameter that is important for the information of excited state as a subton idea.

- 3.4.3. The Phase Angle and the Parameter Dependent States - 3.4.2.5 The Past Versus the Depth -

3.4.3. The Phase Angle and the Parameter Dependent States

For a parameter, the independent eigenstate $\left|\psi_{n}\right\rangle$ applies the eigenvalue equation as (3.31) $\widehat{N}\left|\psi_{n}\right\rangle=n\left|\psi_{n}\right\rangle$, where the counting number operator $\widehat{N}=a^{\dagger} a$ is defined as first to annihilate (lower \backslash remove) $a|\psi\rangle$ and then to create (increase\restore) $a^{\dagger}|\psi\rangle$ the state
In the transversal plane oscillating state, we have seen double degeneration (3.101) $\widehat{N}_{ \pm}=a_{ \pm}^{\dagger} a_{ \pm}$, where the angular momentum operator is synthesised from the anti-symmetry (3.103)
(3.217) $\hat{L}_{3}=\left(a_{+}^{\dagger} a_{+}-a_{-}^{\dagger} a_{-}\right) \hbar=\left(\widehat{N}_{+}-\widehat{N}_{-}\right) \hbar$.

Because of the parity inversion symmetry discussed in section 3.3.1 only single excitations $n=1$ in a transversal plane are considered. Therefore, we write the parameter independent stationary Schrödinger equation as $\widehat{H}\left|\psi_{1}\right\rangle \doteq E_{1}\left|\psi_{1}\right\rangle$. We reintroduce the given quantity ω for the harmonic oscillator as in (3.166) $\widehat{H}_{\vec{\omega}}\left|\psi_{ \pm 1}\right\rangle \doteq E_{\omega, \pm 1}\left|\psi_{ \pm 1}\right\rangle$ this energy eigenvalue is given by (3.169), $E_{\omega, 1}=(1+1) \hbar \omega$, as we remember from (3.102) and (3.103) that
(3.218) $\quad \widehat{H}_{\omega}|\psi\rangle=\hbar \omega\left(a_{+}^{\dagger} a_{+}+a_{-}^{\dagger} a_{-}+1\right)|\psi\rangle=\hbar \omega\left(\widehat{N}_{+}+\widehat{N}_{-}+1\right)|\psi\rangle \doteq \hbar \omega\left(n_{+}+n_{-}+1\right)|\psi\rangle$
(3.219) $\quad \hat{L}_{3}|\psi\rangle=\hbar\left(a_{+}^{\dagger} a_{+}-a_{-}^{\dagger} a_{-}\right)|\psi\rangle=\hbar\left(\widehat{N}_{+}-\widehat{N}_{-}\right)|\psi\rangle \doteq \hbar\left(n_{+}-n_{-}\right)|\psi\rangle$,
wherein $n_{+}+n_{-}=1$ (or $\left.=0\right)$. We say ideologically that the operator $\widehat{N}_{ \pm}$tests the state $|\psi\rangle$ and find the quantum number $n_{ \pm}$either for + or - for a circle oscillator rotation with angular momentum $n_{+}-n_{-}=m= \pm 1$ (or non).
Hence only with progressive or retrograde helicity from developing transversal rotation.
The parameter independent factor in the transversal excited state, we described (3.194)-(3.196) as
$|\psi\rangle \leftrightarrow \bigcirc \leftrightarrow\binom{\tilde{r}(\rho) \odot}{0}=\binom{\tilde{r}(\rho) e^{i \theta}}{0} \in\binom{\mathbb{C}}{\mathbb{R}}$ for $\quad \forall \rho \in \mathbb{R}, \forall \theta \in[0,2 \pi[$,
but the creation operator $a_{ \pm}^{\dagger}$ from (3.128) and (3.129) also contain multiply an active information development factor $e^{ \pm i \phi}$ to the direction $\widehat{\vec{\omega}}$, then
(3.221) $\quad\left|\psi_{ \pm \widehat{\widehat{\omega}}}(\phi)\right\rangle=e^{ \pm i \phi}|\psi\rangle \leftrightarrow\binom{\psi_{ \pm \vec{\omega}}^{\odot}(\phi)}{-|\phi|} \sim\binom{\tilde{r}(\rho) \odot e^{ \pm i \phi}}{-|\phi|} \leftrightarrow e^{ \pm i \phi} \bigcirc \perp c|\phi| \widehat{\vec{\omega}}$, where $|\phi|=|\omega t|$. As argued in section 3.3.4 the two-dimensional circle oscillator rotation is transmitted by this transversal idea through the third dimension of information into the development space. It is this transmitting single state we call a subton, for which we above introduced the concept of a direction $\vec{n}=\widehat{\vec{\omega}}$ perpendicular to the concept of a unitary rotation $\odot=\left\{U_{\theta}: \theta \rightarrow e^{i \theta} \in U(1) \mid \forall \theta \in[0,2 \pi[\subset \mathbb{R}\}\right.$, determined transversely to the direction $\widehat{\vec{\omega}} \perp \odot$. We remember that $\widehat{\vec{\omega}}$ is autonomous normed $|\widehat{\vec{\omega}}| \equiv 1$ direction also for the external given angular frequency energy quantity $\omega[\widehat{\omega}]$. This external measured frequency energy ω for the subton direction $\vec{\omega}$ has the following parallel \|| relationship with the autonomous direction
(3.222) $\quad \widehat{\vec{\omega}}=\overrightarrow{\mathbf{1}} \leftrightarrow \vec{\omega}=\omega \overrightarrow{\widehat{\omega}}=\omega \widehat{\omega} \mathbf{e}_{3}=\omega \mathbf{e}_{3}\|\widehat{\vec{\omega}}\| \overrightarrow{\widehat{\omega}} \| \mathbf{e}_{3}, \quad$ where $|\overrightarrow{\widehat{\omega}}|=|\widehat{\omega}|=\widehat{\omega}=1[\widehat{\omega}]$ and $c=1$. $\widehat{\omega}$ is a selected external frequency standard as the angular frequency measurement reference. ${ }^{114}$ For one subton we imagine a single angular frequency ω and a single direction $\widehat{\vec{\omega}} \| \mathbf{e}_{3}$. When we claim one single direction there must be found other directions $\widehat{\vec{\omega}}_{m} \neq \widehat{\vec{\omega}}^{\text {or }} \widehat{\vec{\omega}}_{m} \sharp \widehat{\vec{\omega}}$, with $\overrightarrow{\widehat{\omega}}_{m} \sharp \overrightarrow{\hat{\omega}}$, but still $\left|\overrightarrow{\widehat{\omega}}_{m}\right|=|\overrightarrow{\hat{\omega}}|=|\widehat{\omega}|$ for the same reference $[\widehat{\omega}]$. (Remember $\left|\widehat{\widehat{\omega}}_{m}\right|=|\widehat{\hat{\omega}}| \equiv 1$). In the following, we confine ourselves to one direction $\widehat{\vec{\omega}} \| \mathbf{e}_{3}$, and will examine several subtons

[^0]For quotation reference use: ISBN-13: 978-8797246931

[^0]: ${ }^{14}$ The unit vector \mathbf{e}_{3} indicates the direction with length magnitude $\left|\mathbf{e}_{3}\right|=1\left[\widehat{\omega}_{c-1}^{-1}\right]$, while $|\widehat{\widehat{\omega}}| \equiv 1$ [angular radian], and of cause the reference $\widehat{\omega} \equiv 1[\widehat{\omega}]$. - Then the given measured angular frequency energy quantity can be $\omega[\widehat{\omega}]$.
 © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-99 \quad$ Volume I, - Edition 2-2020-22, - Revision $6, \quad$ December 2022

