$\mathbf{\nabla}$

CS S

earch

on

th

 $\overline{\mathbf{O}}$

ρ

priori

of

Physics

Geometric Critique

of Pure

Mathematical Reasoning

Edition

N

 \bigcirc

N

020-22

December 2022

lens

rfurt

Andres

en

- I. The Time in the Natural Space - 3. The Quantum Harmonic Oscillator - 3.4. The Quantum Excited Direction -

100 The reference of this *quantity* is the auto-norm *direction* $\vec{\omega}$ as a *primary quality*.

The 'measure mechanics' of this substance is the 'by us' contrived helix ± 1 of the unitary circle group $\bigcirc = \{\theta \to e^{i\theta} | \forall \theta \in \mathbb{R}\}$. The *quantity* of the subject can of course not be measured directly but is an autonomous capacity of the subject as an idea of the existence of the extension. Comment: The idea for us of a subject *entity* $\stackrel{AB}{}_{\circ}\Psi_{+\widehat{\alpha}}$ in physics that possess extension, is essential for the idea of natural space in physics. Due to Immanuel Kant: Space itself can never be an object for our intuition. Properly we can promote the idea ${}^{AB}_{\Box} \Psi_{\pm \widehat{\alpha}}$ to some object for us (das Ding für uns) and make some measurements in space.

3.4.1.2. Annihilation of an Excited Circle Oscillator

The excited circle oscillator (3.163) is written without the 2 factor,¹⁰¹ by including negative ρ , for $\forall \rho \in \mathbb{R} \setminus \{0\}$ we write (remembering $\phi = \omega t$)

$$(3.200) \qquad \psi_{\pm\omega}^{\circ} = |1,\pm1\rangle_{\omega}^{\circ} = a_{\odot\pm\omega}^{\dagger}|0,0\rangle_{\odot} = e^{\pm i\phi} \left(\rho - \frac{\partial}{\partial\rho} \mp \frac{i}{\rho} \frac{\partial}{\partial\phi}\right)|0,0\rangle_{\odot} = \left[\frac{1}{\sqrt[4]{\pi}}\rho e^{-\frac{1}{2}\rho^{2}}\odot e^{\pm i\omega t}\right]_{\forall\rho\in\mathbb{R}}$$

The parity inversion problem we incorporated in the following by considering all proper real radial coordinates as a representation of the odd function dipolar opposition, see (3.120). When the annihilation operator works on the first excitation, we get the ground state back

(3.201)

$$\begin{aligned} a_{\odot\pm\omega}a_{\odot\pm\omega}^{\dagger}|0,0\rangle &= a_{\odot\pm\omega}|1,\pm1\rangle_{\omega}^{\odot} = \frac{e^{\mp i\phi}}{2}\left(\rho + \frac{\partial}{\partial\rho} \mp \frac{i}{\rho}\frac{\partial}{\partial\phi}\right)\frac{1}{\sqrt{\pi}}\rho e^{-\frac{1}{2}\rho^{2}}\odot e^{\pm i\phi} \\ &= \frac{1}{2}\frac{1}{\sqrt{\pi}}(\rho^{2}-\rho^{2}+1+1)e^{-\frac{1}{2}\rho^{2}}\odot e^{\pm i\phi}e^{\mp i\phi} = 1\cdot\frac{1}{\sqrt{\pi}}e^{-\frac{1}{2}\rho^{2}}\odot e^{\pm i\omega t}e^{\mp i\omega t} = \frac{1}{\sqrt{\pi}}e^{-\frac{1}{2}\rho^{2}}\odot. \end{aligned}$$

- Having an event A: The creation of excitation ${}^{A}|1,\pm 1\rangle_{\omega} = {}^{A}a^{\dagger}_{\pm\omega}|0,0\rangle$ and
- subsequent event B: Annihilation ${}^{B}a_{\pm\omega}{}^{A}|1,\pm 1\rangle_{\omega} = {}^{B}a_{\pm\omega}{}^{A}a_{+\omega}^{\dagger}|0,0\rangle = |0,0\rangle$ back to the ground state, we have produced a *quantity*,

(3.202)
$$|\phi_{\rm B} - \phi_{\rm A}| = |\omega|(t_{\rm B} - t_{\rm A})$$

which gives the difference between events A and B.

In the autonomous image with autonomous norm $|\hat{\vec{\omega}}_{AB}|=1$ we call the *phase angle development* $|\phi_{\rm B} - \phi_{\rm A}| = |\widehat{\vec{\omega}}_{\rm AB}|(t_{\rm B} - t_{\rm A})$ a measure of the autonomous time of the entity ${}^{\rm AB}\psi_{\pm \hat{\vec{\alpha}}}$. Here we recall that the angular frequency energy ω is given from an external norm $\hat{\omega}$ as the reference standard. Then, the external extension from A to B is expressed as

(3.203) $z_{AB} = -c(t_B - t_A) = (-c |\phi_B - \phi_A| / |\omega|) [c \hat{\omega}^{-1}].$

> This is measured by our external development parameter $t = |\phi|/|\omega|$ [$\hat{\omega}^{-1}$], in that the internal phase angle is counted with the external angular frequency $\omega[\hat{\omega}]$ of the circle oscillator ${}^{AB}\Psi_{\pm\hat{\omega}}$.

3.4.1.3. Change of Direction of an Excited Circle Oscillator

In another way, we have an excited state $^{AB}|1,\pm 1\rangle_{\omega}$ with a *direction* $\hat{\vec{\omega}}_{AB}$, and allows a combined sequential annihilation- and creation-operation event ${}^{B}\hat{N}_{\pm\omega} = {}^{B}a_{\pm\omega}^{\dagger}{}^{B}a_{\pm\omega}$ to act on the *entity* $^{AB}\Psi_{+\omega}$ in penetration through the ground state at B back to a new excited state ${}^{BC}|1,\pm 1\rangle_{\omega}$ with a new *direction* $\hat{\vec{\omega}}_{BC}$. Assuming the same angular frequency energy ω measured by an external reference $\hat{\omega}_0$ with the norm $|\hat{\omega}_0| = 1_0$ as at (3.187)

$$(3.204) \qquad \widehat{\vec{\omega}}_{AB} \leftrightarrow \vec{\omega}_{AB} = \omega_{AB} \vec{1}_{AB} = \omega_{AB} \widehat{\omega}_0 \vec{1}_{AB} \qquad \text{and} \qquad \widehat{\vec{\omega}}_{BC} \leftrightarrow \vec{\omega}_{BC} = \omega_{BC} \widehat{\omega}_0 \vec{1}_{BC}$$

An arbitrary *directional* basis vector $\vec{1}_{XY}$ has a magnitude $|\vec{1}_{XY}| = 1_0 [\hat{\omega}_0^{-1}]$ of the extension in relation to the angular frequency reference $\hat{\omega}_0$, that is $|\vec{\hat{\omega}}_0| = 1_0 [\vec{\omega}_0]$. Assuming preservation of frequency energy in the event B, then, that $\omega_{BC} = \omega_{AB}$

⁰⁰ A depth is dependent on the transversal (length and breadth) (), as essential for the concept of extension by Descartes. ⁰¹ The parity factor 2 occurs when the polar radius coordinate is restricted to positive values $\rho > 0$. (See Section 3.3.1).

C Jens Erfurt Andresen, M.Sc. Physics, Denmark - 92 -Research on the a priori of Physics

For quotation reference use: ISBN-13: 978-8797246931

- 3.4.1. The Direction of the First Excitation Described in Cylindrical Coordinates. - 3.4.1.5 The Substance of the Concept

and thus $|\vec{\omega}_{BC}| = |\vec{\omega}_{AB}|$. If here $\vec{\omega}_{BC} \neq \vec{\omega}_{AB}$, there is a change in B of the *direction*¹⁰² for the entity ^{ABC} $\Psi_{+\omega}$. On the other hand, if $\vec{\omega}_{BC} = \vec{\omega}_{AB}$, event B become irrelevant for the *entity* $^{AC}\Psi_{+\overrightarrow{\omega}}$ as one and the same *direction*.

As frequency energy $\omega_{BC} = \omega_{AB}$ can be conserved and the *direction* is changed in B, we

conclude that the angular momentum change *direction* $\hbar \vec{L}_{3AB}^{\pm} \neq \hbar \vec{L}_{3BC}^{\pm} \Leftrightarrow \pm 1 \hat{\vec{\omega}}_{AB} \neq \pm 1 \hat{\vec{\omega}}_{BC}$. We see that the *direction* is embedded in the angular momentum as a result of the idea of an angular frequency, producing rotation in a plane whereby we get a circle oscillator, which is transversal to the *direction* with orientation + for forward, and - for the past. This is combined with + for progressive, and - for retrograde rotation. This bipolar orientation of angular momentum defines the transversal plane with *direction*. We have the concept of a difference between A and B with two orientations AB and BA. The claim is that for the possibility to distinguish two events A and B we shall be able to recognize a transversal plane between them. Yes, it should similarly be possible by intuition to conceive an *entity* ${}^{AB}_{\odot}\Psi_{+\widehat{\alpha}}$ as illustrated in Figure 3.13, which can be used to measure the difference between A and B. – If the subject can be promoted to an object, we achieve extension.

3.4.1.4. The Fundamental Substance for an *Entity* and the Extensive Difference

By intuition, we look at the difference between the two events A and B and write the symbolic expression for the creation of an *entity* subject for this AB difference

 $^{AB}\Psi \leftrightarrow {}^{B}a_{\odot+\omega}{}^{A}a_{\odot+\omega}^{\dagger}|0,0\rangle.$ (3.205)

> The causality for this intuition of the difference presupposes the possibility of excitation of a harmonic circle oscillation transversal to the difference AB with frequency energy $\hbar\omega$ and angular momentum $\pm \hbar \hat{\vec{\omega}}_{AB}$. A measurement of such an extensive difference as the number of oscillations will depend on $\omega[\hat{\omega}]$ as a reference and the measured extensive *quantity* will then be expressed by (3.203) $z_{AB} = -c |\phi_B - \phi_A| / |\omega| [c \hat{\omega}^{-1}].$

3.4.1.5. The Substance of the Concept of a Photon

The expression ${}^{AB}\Psi_{\pm\omega} \leftrightarrow {}^{B}a_{\odot\pm\omega}{}^{A}a^{\dagger}_{\odot\pm\omega}|0,0\rangle$ may appear to be associated with a photon which subject is created and transmitted from event A with the speed of light and is received and annihilate in B. However, above, we have described a more substantial structure for a difference AB illustrated by Figure 3.13.

Therefore, I will introduce the term a *subton* for this space-time *subject*. Note that, the conventional space-time 'light-cone'¹⁰³ is wound up as a spiral helix in a cylinder along $|\phi| = -x_3$ in Figure 3.13. Thereby it is possible to understand by graphical intuition how simple quantum mechanics performs in space-time. The *subton* is one quantum excitation count by autonomy its own internal phase angle *direction* driven external, by its external angular frequency energy $\omega[\hat{\omega}]$ as its given *quantity*. This internal counting measure of the external extension *quantity* is translated to a space-time measure expressed by the formula (3.203).

Annihilation B of a subton under the premise of a prior creation A gives the concept of phase angle plane *direction* coherent locality transversal propagation extension in space-time.¹⁰⁴

¹⁰² The change of <i>direction</i> in B requires interaction ^B h ¹⁰³ The space-time 'light cone' (Minkowski) is usually of	
here in the polar cylinder coordinates is it { $(t, \rho, \varphi, cylinder surface \overline{o}, we get { (t, 1, \phi + \theta, x_3) c^2 t^2 = surface as shown in Figure 3.13. As seen later in Figure 3.14 This is the idea of something real material: extensate priori idea of direction by Immanuel Kant. Now it is$	x_3) $c^2 t^2 = \rho^2 + x_3^2$ } $x_3^2 = (\phi/\omega)^2$, $\varphi = \phi + \varphi$ gure 5.55 and page 334 (Descartes), in nature (
© Jens Erfurt Andresen, M.Sc. NBI-UCPH,	- 93 -
	ICDNI 12

For quotation reference use: ISBN-13: 978-8797246931

the environment of *entity* ABC $\Psi_{+\omega}$. $(z_3) \mid c^2 t^2 = x_1^2 + x_2^2 + x_3^2$ in Cartesian coordinates, but where $\rho^2 = x_1^2 + x_2^2$ with $\langle \rho \rangle = 1$. As we view the unit $+\theta$ where we have removed $\rho=1$ on the unit cylinder that this cylinder it is a *null helix* curve. (Spinoza) or in physics for us. This is built on the a formation in a received signal from a transmission.