Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

3.4. The Quantum Excited Direction

We have here in section 3.3.4 seen that a direction $\widehat{\hat{\omega}}$ is linked to the transversal plane whose quality $\odot \perp \widehat{\bar{\omega}}$ is associated with the rotational symmetry of the unitary rotation group $U(1)$ $\odot=\left\{U_{\theta}: \theta \rightarrow e^{i \theta} \in U(1) \mid \forall \theta \in \mathbb{R}\right\} \quad$ (3.137)
3.4.1. The Direction of the First Excitation Described in Cylindrical Coordinates.

In cylindrical coordinates type (ρ, φ, z), we can write the angular frequency vector as
$\vec{\omega}=\omega \overrightarrow{\hat{\omega}} \leftrightarrow(0,0, \omega)=\omega(0,0,1)$, in which the first two coordinates $(0,0) \rightarrow(\rho, \theta) \sim\left(\rho_{\omega}, \theta\right)$ describe the transversal plane to the vector $\vec{\omega}$. Looking at the coordinates for the development of the excitation we have, as the new idea, the cylinder axis coordinate:
(3.189) $z=-c t=-c|\phi| /|\omega|$,
that we have chosen positive out in the direction $\vec{\omega} \leftrightarrow(0,0,1)$, where the opposed development parameter t is defined positively as a manufactured past in the direction $-\overrightarrow{\hat{\omega}}$. The angular coordinate is written $\varphi=\theta \pm \omega t$. In particular, we have the active angle $\phi=\omega t$ and the start basic angle is θ for $t=0$.
These two coordinates $(\varphi, z) \leftrightarrow(\phi, z)$ follow the information development parameter t.
The radial distribution ρ is independent of t. We note the rewriting $\rho=\omega \rho_{\omega} / c$,
therefore, I describe the following options for coordinate arguments for the wavefunction for the excitation of the circle oscillator development
(3.190) $\quad \psi_{ \pm \vec{\omega}}\left(\begin{array}{c}\rho_{\omega} \\ \varphi \\ z\end{array}\right)=\psi_{ \pm \bar{\omega}}\left(\begin{array}{c}c \rho /|\omega| \\ \theta \pm|\omega| t \\ -c t\end{array}\right)=\psi_{ \pm \vec{\omega}}\left(\begin{array}{c}c \rho /|\omega| \\ \theta \pm \phi \\ -c|\phi| /|\omega|\end{array}\right) \sim \frac{1 c}{|\omega|} \psi_{ \pm \omega \vec{\omega}}^{(\theta)}\left(\begin{array}{c}\rho \\ \pm \phi \\ -|\phi|\end{array}\right) \leftrightarrow \psi_{ \pm \hat{\omega}}^{\odot}\left(\begin{array}{c}\rho \\ \pm \phi \\ -|\phi|\end{array}\right)$.

As an example, I define the entity ${ }^{\mathrm{AB}} \Psi_{ \pm \vec{\omega}}$ by creation in event A , to annihilation at B ,
(3.191) $\quad{ }^{\mathrm{AB}} \Psi_{ \pm \omega \vec{\omega}}=\left\{\left.\psi_{ \pm \omega}\left(\begin{array}{c}\rho \\ \theta \pm \omega \mathrm{t} \\ -|\omega| t\end{array}\right)_{\vec{\omega}} \in \mathbb{C} \right\rvert\, \forall \rho \in\left[0, \infty\left[, \quad \forall \theta \in\left[0,2 \pi\left[, \quad \forall t \in\left[t_{\mathrm{A}}, t_{\mathrm{B}}\right] \subset \mathbb{R}\right\}\right.\right.\right.\right.$

I also by intuition consider the entity as a complex scalar field as a function of these cylindrical coordinates and maintain the angular coordinate in dualism for intuition; where $\phi=\omega t$ evolves and θ is an eternal constant distributed on $[0,2 \pi[$ as a basic background for $\phi=\omega t$, joined in this duality by the resulting angular phase $\varphi=\theta+\omega t$ for a full description.
From the formulas (3.148)-(3.149) and (3.163) I write this as the complex scalar field in the excitation transversal plane $\odot \perp \vec{\omega}$
(3.192) $\psi_{ \pm \omega}^{(\rho, \theta)}(\phi)=a_{\odot \pm \omega}^{\dagger}|0,0\rangle=2 \tilde{r}(\rho) \odot e^{ \pm i \phi}=\left(2 \frac{1}{\sqrt[4]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}} e^{i \theta}\right) e^{ \pm i \phi} \in \mathbb{C}$, for $\forall \rho \geq 0, \forall \theta \in[0,2 \pi[, \forall \phi \in \mathbb{R}$, and then expressed by an information development parameter $t=|\phi / \omega|$, with the transversal radial rewriting $\rho_{\omega}=c \rho / \omega$, we now for $\forall t \in \mathbb{R}$ getting
(3.193) $\quad \psi_{ \pm \omega}^{\left(\rho_{\omega}, \theta\right)}(t)=a_{\odot \pm \omega}^{\dagger}|0,0\rangle=2 \tilde{r}\left(\frac{\omega \rho_{\omega}}{c}\right) \odot e^{ \pm i \omega t}=\left(2 \frac{1}{\sqrt[4]{\pi}} \frac{\omega \rho_{\omega}}{c} e^{-\frac{1}{2}\left(\frac{\omega \rho_{\omega}}{c}\right)^{2}} e^{i \theta}\right) e^{ \pm i \omega t} \in \mathbb{C}$,

The parameter independent factor for this complex scalar field is symbolised by
(3.194) $\quad \bigcirc \leftrightarrow\left(2 \frac{1}{\sqrt[4]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}} e^{i \theta}\right) \leftrightarrow\left(2 \frac{1}{\sqrt[4]{\pi}} \frac{\omega \rho_{\omega}}{c} e^{-\frac{1}{2}\left(\frac{\omega \rho \omega}{c}\right)^{2}} e^{i \theta}\right) \leftrightarrow|\psi\rangle$

Thus, hiding the plane coordinates (ρ, θ) in a classical transcendental substance \odot.
What we a priori know about this subject, is that it is transversal $\odot \perp \widehat{\bar{\omega}}$
Here it is noted that the idea is that the scale of the isotropic symmetric radial ρ in the transversal © refers to the autonomous norm $1:=|\widehat{\widehat{\omega}}|$.
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark

The phase angle parameter dependent version can then be written (compare (2.62))
$e^{ \pm i \phi} \bigcirc \bigcirc \psi_{+\widehat{\omega}}^{\odot}(\phi) \sim \psi_{ \pm \omega}^{\odot}(\phi)=\psi_{ \pm}^{\odot}(\omega t), \quad$ or traditional written $\quad|\psi(t)\rangle=e^{ \pm i \widehat{\omega} t}|\psi\rangle$.
This is involved a 'new' kind of polar cylinder coordinate system $(\psi, z) \in \mathbb{C}, \mathbb{R}$, where

1. $\psi \in \mathbb{C}$ describe the complex transversal plane and
2. $z \in \mathbb{R}$ describes the linear real axis of the cylinder system

This makes me rewrite the idea in (3.190) to
(3.196) $\quad\binom{\psi}{Z} \in\binom{\mathbb{C}}{\mathbb{R}} \xrightarrow[\rightarrow]{\widetilde{\rightarrow}}\binom{\psi_{ \pm \omega}^{\odot}(\omega t)}{-c t}_{\vec{\omega}} \leftrightarrow\binom{\psi_{ \pm \widehat{\omega}}^{\odot}(\phi)}{-|\phi|}_{\widehat{\vec{\omega}}}^{\sim} \sim\binom{2 \tilde{r}(\rho) \odot e^{ \pm i \phi}}{-|\phi|}_{\hat{\bar{\omega}}} \sim e^{ \pm i \phi} \bigcirc \perp c|\phi| \widehat{\vec{\omega}}$

Here the autonomous normed angular frequency energy has a unit vector $\widehat{\vec{\omega}}=\overrightarrow{\mathbf{1}} \sim\binom{0}{1} \in\binom{\mathbb{C}}{\mathbb{R}}$ for the direction of development, - a propagation - and the axis $\{z=c|\phi| \widehat{\vec{\omega}} \mid \forall \phi \in \mathbb{R}\}$ of 'the cylinder'. From this, we write (3.191) seen from external in the form
(3.197) $\quad{ }^{\mathrm{AB}} \Psi_{ \pm \widehat{\bar{\omega}}}=\left\{\bigcirc e^{ \pm i \phi} \perp c|\phi| \widehat{\vec{\omega}} \mid \bigcirc \perp \widehat{\vec{\omega}}, \forall \phi \in\left[\phi_{\mathrm{A}}, \phi_{\mathrm{B}}\right] \subset \mathbb{R}\right\}, \quad$ existence from A to B.

It is up to the reader to interpret the implications of the formulas (3.190)-(3.197) for physics.

Figure 3.13
The intuition of causality as a primary quality: The in A created entity ${ }^{\mathrm{AB}} \Psi_{+\widehat{\omega}}$, is causally annihilated in B. The development direction $\overrightarrow{\mathrm{AB}}=\vec{z}_{\mathrm{AB}}=-\left|\phi_{\mathrm{AB}}\right| \hat{\bar{\omega}}$ is indicated in the reading direction, while the development parameter $t \equiv|\phi| / \widehat{\omega}$ has the opposite orientation. The autonomous wavelength is $\hat{\lambda}=2 \pi$, when $|\widehat{\widehat{\omega}}| \equiv 1$. (Here is illustrated 2 full periods $\left|\phi_{\mathrm{B}}-\phi_{\mathrm{A}}\right|=2 \cdot 2 \pi$).
It is well known from Einstein's theory of relativity that the time parameter t has a relativistic measure, therefore I prefer besides lights-peed-norming $c=1$ and angular frequency to energy standard ratio $\hbar=1$ to auto-norm the angular frequency $|\omega|=|\widehat{\vec{\omega}}|=|\widehat{\omega}|=1$, so that the development parameter just give the evolution of the angular phase $|\phi|=|\widehat{\omega}| t$ of the excited state. In short, we set $t:=|\phi|$ in the auto-norm picture, hence $x_{3}=-|\phi|$ from the extension idea

$$
x_{3}:=z=-t=-c t, \quad \text { when } \quad c=1, \quad \hbar=1, \quad \text { and } \quad|\omega|=1 .
$$

These aspects of the quality a direction from (3.197) are illustrated Figure 3.13, where the intuition is confined to the unitary circle group $\odot=\left\{U_{\theta}: \theta \rightarrow e^{i \theta} \in U(1) \mid \forall \theta \in \mathbb{R}\right\}$, and we disregard the radial distribution © and concentrate our idea on a rotating unit helix (cylinder)

$$
\text { (3.199) } \quad{ }_{\odot}^{\mathrm{AB}} \Psi_{ \pm \widehat{\bar{\omega}}}=\left\{\left.\binom{e^{i \theta} e^{ \pm i \phi}}{-|\phi|} \sim \odot\binom{e^{ \pm i \phi}}{-|\phi|} \in\binom{\mathbb{C}}{\mathbb{R}} \right\rvert\, \odot \perp \widehat{\vec{\omega}}, \quad \forall \phi \in\left[\phi_{\mathrm{A}}, \phi_{\mathrm{B}}\right] \subset \mathbb{R}\right\} \text {. }
$$

If we take a classic point of view, we must of causal reasons establish the reference system at the annihilation event B , as, what we call a measurement only can appear here. What can be measured or counted is in principle the number of oscillations $\frac{1}{2 \pi}\left|\phi_{\mathrm{B}}-\phi_{\mathrm{A}}\right|$. In a traditional interpretation, the real measure has been accepted. Here, the autonomous norm measure is into the past from B , back to the creation A , defined as the extension in a reality from B back to A. ${ }^{100}$

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

