Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

To determine the quality of excitations we examine their eigenvalue equation for the angular momentum of the circle oscillator (3.167), which give rise to the two angular momentum vectors of (3.168), which sets two opposite orientations of a direction in something we call space. The one $\vec{L}_{3}^{+}=+\hbar \vec{n}$ into the future, the other opposite $\vec{L}_{3}^{-}=-\hbar \vec{n}$ back into the past, which constitutes each side of the circle oscillator plane. - See Figure 3.8
We remember from (3.168) that $\left|\vec{L}_{3}^{ \pm}\right|=\hbar=1$.
3.3.4.3. The Qualitative Unit of the Circle Oscillator Entity

To understand the quality of a circle oscillator we are looking for the unit of its fundamental quantity. In addition, we introduce an autonomous normalization of the angular frequency, that is, we put $\omega=|\widehat{\omega}|=1$, where $\widehat{\omega}$ stands for a unit of angular frequency as a norm for $\widehat{\omega}$ itself, an autonomous norm. Furthermore, we set $\hbar=1, c^{2}=1$ in our intuition of the unit idea to concern it all, in the way that $\left|\vec{L}_{3}^{+}\right|=\left|\vec{L}_{3}^{-}\right|=1$, and $\vec{L}_{3}^{+}=-\vec{L}_{3}^{-}$.
We introduce a unit vector as the direction in some space outwards from the active circular rotation
$\hat{\bar{\omega}}=\vec{L}_{3}^{+}=\vec{n}=\overrightarrow{\mathbf{1}} \sim \hat{\overline{\mathbf{1}}} \sim \hat{L}_{3} \sim \hat{\widehat{\omega}}$,
where the unit norm for the angular frequency vector is written $|\widehat{\widehat{\omega}}|=|\widehat{\omega}| \equiv 1$. Thus, alleged: The direction vector $\widehat{\vec{\omega}}$ for the rotation represents the quality of a circle oscillator. Hence the quality direction is substantial to the concept of a transversal circular rotation.

Figure 3.9 An intuition of the density distribution of the angular momentum for a retrograde excited circle oscillation. The negative direction $\vec{L}_{3}=-\vec{n}$ for the retrograde rotation just points into the past from the transversal plane. The transversal plane is represented by the polar coordinates (ρ, θ), which is equivalent to the complex number $\rho e^{i \theta}$ The transversal plane in represented by the polar coordinates (θ, θ), which is equivalent to the complex
The magenta circle ring represents the unitary rotational group $U(1)$, where $\odot=\left\{U_{\theta}: \theta \rightarrow e^{i \theta} \in U(1) \mid \forall \theta \in \mathbb{R}\right\}$.
This dictates that the radial distribution $2 \frac{1}{\sqrt[4]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}}$ of the excitation of the angular momentum must be rotation symmetric in the \odot plane. We let the autonomous normed vector $\widehat{\vec{\omega}}$ for the angular frequency determine the excitation with the creation operator $a_{ \pm \hat{\omega}}^{\dagger}$. The excited states (3.163) are $a_{ \pm \widehat{\omega}}^{\dagger}|0,0\rangle=|1, \pm 1\rangle_{\widehat{\omega}}=2 \frac{1}{\sqrt[4]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}} \bigodot_{\hat{\omega}} e^{ \pm i \omega t}$.
The direction of the unitary rotational symmetry $\bigodot_{\widehat{\omega}}$ is given extern perpendicular to the direction $\widehat{\vec{\omega}}=\vec{L}_{3}^{+}$ Hence the transversal plane for $\bigodot_{\widehat{\hat{\omega}}}$ has $\widehat{\vec{\omega}}$ as normal vector $\widehat{\vec{\omega}} \perp \odot$. $\widehat{\vec{\omega}}$ is the direction FORWARD into the future. Here, in this figure, the retrograde excitation $m=-1$ is illustrated as a unitary ($\rho=1$) spiral cylinder $|1,-1\rangle_{\widehat{\omega}} \sim \odot e^{-i \omega t}=e^{i \theta} e^{-i \omega t}=e^{-i \omega t+i \theta}$, stretching out in the past, with a positive development parameter t, or phase $|\phi|=|\widehat{\omega}| t$. This retrograde excitation is in line with the eigenvalue equation (3.114) $\vec{L}_{3}^{-}|1,-1\rangle_{\widehat{\omega}} \doteq-1|1,-1\rangle_{\widehat{\omega}}$. The intuition in this figure assumes that all conditions are normalized $\left(1 \equiv|\widehat{\omega}|=|\widehat{\hat{\omega}}|=\left|\vec{L}_{3}^{ \pm}\right|=\hbar=c^{2}=1\right)$.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark
-84-
Research on the a priori of Physics December 2022
-3.3.4. The Possible Excitation of a Circular Oscillator with \pm Signed Orientation. - 3.3.4.3 The Qualitative Unit of the

The plane of circle oscillators is transversal and those point out a direction $\widehat{\vec{\omega}}$ for information development (a course to sail in space-time).
The sign of the direction orientation associated with angular momentum depends on the sign of the active rotation in the transversal plane following (3.167).
The positive direction for information development of the transversal plane in a circle oscillator \vec{n} is given by the direction of \vec{L}_{3}^{+}. The positive FORWARD orientation of the direction into the future we use as an arrow vector direction for the angular frequency oscillation
$\widehat{\vec{\omega}}=\vec{L}_{3}^{+}=\vec{n}$.
This is the primary quality of any development through a plane as given by an active creation of a circle rotation with a necessary energy quantity ω (the angular frequency). The active flow
direction $\widehat{\vec{\omega}}$ by the transversal plane into the future gives the positive orientation of rotation in the transversal plane. - (You may use the right-hand rule.)
The two possible orientations of rotation $m= \pm 1$, are given by (3.167).
The retrograde angular momentum vector $\vec{L}_{3}^{-}=-\widehat{\vec{\omega}}$ points into the past, and appoints thus the coordinate direction that represents the past,
'As a tail pulled by the circle oscillators momentum' shown in Figure 3.9.
We have two cases of rotation orientations $\vec{L}_{3}^{ \pm}= \pm 1 \cdot \widehat{\vec{\omega}}$

- The angular momentum $\vec{L}_{3}^{ \pm}$represents the active angular rotation in the transversal plane.
- The rotation axis direction $\widehat{\vec{\omega}}$ represents the active progress through the transversal plane.

Figure 3.10 The intuition of expectation for the radial distribution of the active angular moment over the transversal plane for a retrograde $\vec{L}_{3}^{-}=-\widehat{\widehat{\omega}}$ excited circle oscillation. First the integrated contribution of the excited angular state throughout for a retrograde $\vec{L}_{3}=-\widehat{\omega}$ excited circle oscillation. First the integrated contribution of the excited angular state throughout
the transversal plane, we expect $\langle 1,-1| \vec{L}_{3}^{-}|1,-1\rangle_{\widehat{\omega}}=\langle 1,-1 \mid 1,-1\rangle_{\widehat{\omega}}^{L_{3}^{-}}=\vec{L}_{3}^{-}$. Then a detailed action contribution from a tiny circle ring $d \rho$ at radius ρ for the expectation of the angular momentum distribution
$\left|2 \frac{1}{\sqrt[4]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}}\right|^{2} \vec{L}_{3}^{-} d \rho=\frac{4}{\sqrt{\pi}} \rho^{2} e^{-\rho^{2}} \vec{L}_{3}^{-} d \rho$, and by radial integration $\int_{0}^{\infty} \frac{4}{\sqrt{\pi}} \rho^{2} e^{-\rho^{2}} \vec{L}_{3}^{-} d \rho=\vec{L}_{3}^{-} \int_{0}^{\infty} \frac{4}{\sqrt{\pi}} \rho^{2} e^{-\rho^{2}} d \rho=1 \vec{L}_{3}^{-}$ Since the intuition in this figure assumes that all conditions are normalized ($1=\left|\vec{L}_{3}^{ \pm}\right|=|\widehat{\hat{\omega}}|=|\widehat{\omega}| \equiv 1=\hbar=c^{2}$) then we equivalent in the classical picture conclude that $m_{\omega}=1$ is an angular initial 'mass' in a circling ring at medium radius $r=\bar{\rho}=1$ from (3.66) corresponds to a moment of inertia $I_{3, \omega}=m_{\omega} r^{2}=\left|\vec{L}_{3}^{-}\right| / \omega=1 . \quad\left(1=r=m_{\omega}=I_{3, \omega}=\left|\vec{L}_{3}^{ \pm}\right|\right)$. The illustrative idea with the classic image of the angular momentum viewed as a plane rotating disc or ring with an equivalent mass, giving a moment of inertia and kinetic energy (normed as $=1$), around in the transversal plane. In the classic view, there is no action out from the plane. A contradiction to this, the created quantum circle oscillation produces a
helix field through the passed displayed by a phase-parameter $|\phi|=|\widehat{\omega}| t$. I would try to express the picture that the past helix field through the passed displayed by a phase-parameter $|\phi|=|\widehat{\omega}| t$. I would try to express the picture that the past
press the transversal plane FORWARD in the direction $\widehat{\widehat{\omega}}=\overrightarrow{\mathbf{1}}$ and that the kinetic-energy \sim momentum \sim power ~ 1; with the press the transversal plane FORWARD in the direction $\widehat{\vec{\omega}}=\overrightarrow{\mathbf{1}}$ and that the kinetic-energy \sim momentum \sim power ~ 1; with the angular momentum $\vec{L}_{3}^{ \pm}$as a 'motor', internal autonomous norm $\left(|\hat{\bar{\omega}}|=\left|\vec{L}_{3}^{ \pm}\right|=1=\hbar=c^{2}\right)$. - This has the external quantity
© Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-85-\quad$ Volume I, - Edition 2-2020-22, - Revision $6, \quad$ December 2022

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

