

3.3. Excitation of the Plane Harmonic Circle Oscillator

3.3.1. The First Excited States of the Circle Oscillato

In particular, for the first excited state of the circle oscillator $n=n_{+}+n_{-}=1$ from (3.109), there are two states $m=n_{+}+n_{-}= \pm 1$ from (3.110), that is
(3.141) $n_{+}=1, n_{-}=0 \Leftrightarrow n=1, m=1$ and $n_{+}=0, n_{-}=1 \Leftrightarrow n=1, m=-1$.

The first exited state $\left|1_{+} 0_{-}\right\rangle$or $\left|0_{+} 1_{-}\right\rangle$is then by name written as

$$
\left|n_{+} n_{-}\right\rangle=|n, m\rangle \rightarrow|1, \pm 1\rangle, \quad \text { specific as }|1,+1\rangle \text { or }|1,-1\rangle
$$

One creation operation $a_{ \pm}^{\dagger}$ at the ground state is $a_{ \pm}^{\dagger}|0,0\rangle$ we give by the formulas (3.128)-(3.129), wherein the term $\frac{\partial}{\partial \phi}$ does not have any effect on the eternal noumenon ground state, while the terms $\frac{1}{2} \rho-\frac{1}{2} \frac{\partial}{\partial \rho}$ acting on the ground state density magnitude $\frac{1}{\sqrt[4]{\pi}} e^{-\frac{1}{2} \rho^{2}} \in \mathbb{R}_{+}$gives
(3.143) $\quad \tilde{r}(\rho)=\frac{1}{\sqrt[4]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}} \in \mathbb{R}$, for $\forall \rho \in \mathbb{R}$, which is an odd function of the form (3.120),
$\tilde{r}(\rho)=-\tilde{r}(-\rho), \quad$ illustrated in blue $\rho<0$ and red $\rho>0$ in Figure 3.5.
$a_{ \pm}^{\dagger}|0,0\rangle$

Figure 3.5 The graph magnitude for the first excited state in the circle oscillator $\tilde{r}(\rho)=\sqrt[4]{\sqrt[1]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}} \in \mathbb{R}$, for $\forall \rho \in \mathbb{R}$. We see that the anti-symmetry gives a resulting difference around the center $2 \tilde{r}(\rho)=\tilde{r}(\rho)-\tilde{r}(-\rho)$. This is automatically normalised as an observable object for the physical entity given $\left.\langle 1, \pm 1 \mid 1, \pm 1\rangle=\left.\langle | 2 \tilde{r}(\rho)\right|^{2}\right\rangle=1$, for $\rho \geq 0$ The factor $\rho e^{-\frac{1}{2} \rho^{2}}$ for $\rho \geq 0$ is the Rayleigh distribution ($\sigma=1$) with the polar radial mean $\int_{0}^{\infty} \rho e^{-\frac{1}{2} \rho^{2}} d \rho=\sqrt{\pi / 2}$.

The positive and negative density magnitude on either side of a center is in balance in accordance with the principle of Newton's third law, which is $\tilde{r}(\rho)+\tilde{r}(-\rho)=0$. The resulting magnitude is the objective probability quantity of the circular oscillator entity Ψ_{ω} is the difference between the positive and the negative density magnitude $2 \tilde{r}(\rho)=\tilde{r}(\rho)-\tilde{r}(-\rho)$, thus the resulting quantity the probability density is
(3.144) $\quad \operatorname{pd}_{1}(\rho)=2 \tilde{r}(\rho)$ for $\rho \geq 0$.

This probability density magnitude is only counted once for the radial coordinate $\rho \geq 0$. The active creation operators, which act on the planar ground state rotational symmetry \odot in terms of the unitary rotation group $U(1)$, may then be expressed as
(3.145) $\quad a_{\odot+}^{\dagger}=\odot 2 a_{+}^{\dagger}=\odot e^{+i \phi}\left(\rho-\frac{\partial}{\partial \rho}-\frac{i}{\rho} \frac{\partial}{\partial \phi}\right)$, for $\rho>0$, and
(3.146) $\quad a_{\odot-}^{\dagger}=\left(a_{\odot+}^{\dagger}\right)^{*}=\odot e^{-i \phi}\left(\rho-\frac{\partial}{\partial \rho}+\frac{i}{\rho} \frac{\partial}{\partial \phi}\right), \quad$ these according to (3.128)-(3.129) and (3.130).

The active principle requires that the rotation phase angle ϕ is a monotone variable $\phi \equiv \omega t \in \mathbb{R}$ by the information development parameter $t \in \overrightarrow{\mathbb{R}}$. The rotation intuits as an object is created from the noumenon idea of an active rotation $e^{ \pm i \phi}=e^{ \pm i \omega t}$, as they occur in formulas (3.145) and (3.146) for the creation operators $a_{\odot+}^{\dagger}$

For quotation reference use: ISBN-13: 978-8797246931
3.3.1. The First Excited States of the Circle Oscillator - 3.2.4.3 Annihilation and Creation Operators in a Polar Plane

These two operators (3.145)-(3.146) commute with $\hat{L}_{3}=\left(a_{+}^{\dagger} a_{+}-a_{-}^{\dagger} a_{-}\right) \hbar$, hence by (3.103)

$$
\text { (3.147) }\left[a_{\odot+}^{\dagger}, \hat{L}_{3}\right]=\left[a_{\odot-}^{\dagger}, \hat{L}_{3}\right]=0
$$

By this, they have the same eigenstate as \hat{L}_{3} in the eigenvalue equation $\hat{L}_{3}|n, m\rangle \doteq \hbar m|n, m\rangle$. Therefore, the two excited states for $\rho \geq 0$; the progressive with $n=1, m=+1$,
(3.148) $\quad \psi_{+}^{\odot}=|1,+1\rangle=|1,0\rangle=a_{\odot+}^{\dagger}|0,0\rangle=2\left(\frac{1}{\sqrt[4]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}}\right) \odot e^{+i \phi}=2 \tilde{r}(\rho) \odot e^{+i \omega t}$,
and the retrograde with $n=1, m=-1, \quad \uparrow$ where $\rho \geq 0$
(3.149) $\quad \psi_{-}^{\odot}=|1,-1\rangle=|0,1\rangle=a_{\odot-}^{\dagger}|0,0\rangle=2\left(\frac{1}{\sqrt[4]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}}\right) \odot e^{-i \phi}=2 \tilde{r}(\rho) \odot e^{-i \omega t}$

It is noteworthy here, that these first excitations are direct autonomous normalised
(3.150) $\langle 1, \pm 1 \mid 1, \pm 1\rangle=\int_{0}^{\infty} \psi_{ \pm}^{*}(\rho) \psi_{ \pm}(\rho) d \rho=\int_{0}^{\infty}(2 \tilde{r}(\rho))^{2} e^{ \pm i \phi} e^{\mp i \phi} d \rho=\int_{0}^{\infty} \frac{4}{\sqrt{\pi}} \rho^{2} e^{-\rho^{2}} d \rho=1$,
when the ground state is prescribed $\langle 0,0 \mid 0,0\rangle=1 \Rightarrow A_{0}=\frac{1}{\sqrt[4]{\pi}}$.
I.e., that the idea $2 \tilde{r}(\rho)$ is confirmed for $\rho \geq 0$.

When we write $\quad \tilde{r}(\rho)=+1 / 2 \operatorname{pd}_{1}(\rho)$ and $\tilde{r}(-\rho)=-\tilde{r}(\rho)=-1 / 2 \operatorname{pd}_{1}(\rho)$,
the parity inversion contradiction can be written for $\rho \geq 0$
(3.151) $2 \tilde{r}(\rho)=\tilde{r}(\rho)-\tilde{r}(-\rho)=+1 / 2 \operatorname{pd}_{1}(\rho)-1 / 2 \operatorname{pd}_{1}(-\rho)=+1 / 2 \operatorname{pd}_{1}(\rho)+1 / 2 \operatorname{pd}_{1}(\rho)=\operatorname{pd}_{1}(\rho)$.

The excitation energy of the first state is here; according to (3.113) and (3.84),

$$
{ }^{1} E_{\omega}=E_{\omega, 1}-E_{\omega, 0}=\hbar \omega .
$$

By intuition look at the circular rotation described by the polar coordinates, the radial magnitude $\rho \geq 0$ and the phase angle $\phi \equiv \omega t \in \mathbb{R}$, that develops with the parameter $t \in \overrightarrow{\mathbb{R}}$.
So, we compare the classical view with the cyclical oscillator (3.117) or (3.48)
$q_{\omega}^{*}(t, r)=r e^{i \omega t}$, and writes for $\theta=0 \Rightarrow e^{i 0}=1$, for the progressive orientation
(3.153) $\quad q_{\omega}^{*}(t, r)=r e^{+i \omega t} \sim|1,+1\rangle_{\omega, 0}=|1,0\rangle_{\omega, 0}=a_{\odot_{+}^{0}}^{\dagger}|0,0\rangle_{\omega, 0}=\left(2 \frac{1}{\sqrt[4]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}}\right) e^{+i \omega t}$, with $n=1, \quad m=+1 ; \quad$ and the retrograde with $n=1, \quad m=-1$
(3.154) $\quad q_{\omega}(t, r)=r e^{-i \omega t} \sim|1,-1\rangle_{\omega, 0}=|0,1\rangle_{\omega, 0}=a_{\odot_{-}-}^{\dagger}|0,0\rangle_{\omega, 0}=\left(2 \frac{1}{\sqrt[4]{\pi}} \rho e^{-\frac{1}{2} \rho^{2}}\right) e^{-i \omega t}$.

Looking at the absolute squares we can in principle set $r=1$, as
(3.155) $\left.\left.\left.\quad\langle | q_{\omega}(t, r)\right|^{2}\right\rangle=r^{2} \sim\langle 1, \pm 1 \mid 1, \pm 1\rangle=\left.\langle | 2 \tilde{r}(\rho)\right|^{2}\right\rangle=\int_{0}^{\infty} \frac{4}{\sqrt{\pi}} \rho^{2} e^{-\rho^{2}} d \rho=1$

The requirement for an entity ${ }^{\mathrm{A}} \Psi_{ \pm \omega}$ in physics is when created in event A by excitation $a_{ \pm}^{\dagger}|0,0\rangle$, it establishes a geometric plane $\odot=\left\{U_{\theta}: \theta \rightarrow e^{i \theta} \in U(1) \mid \forall \theta \in \mathbb{R}\right\}$ for the circle oscillator and a start phase angular direction $\phi_{0}=\omega t_{0}$ in this plane through this event A.
The problem here is phase direction relative to what?
More on this later below in section 3.5.4 and chapter 6

For quotation reference use: ISBN-13: 978-8797246931

