Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931
(3.101) $\begin{aligned} & \widehat{N}_{+}:=a_{+}^{\dagger} a_{+} \\ & \\ & \\ & \widehat{N}_{-}:=a_{-}^{\dagger} a_{-}\end{aligned}$

Afterwards, instead of (3.82)-(3.84) we write the Hamilton eigenvalue equation as
(3.102) $\quad \widehat{H}_{\omega}\left|n_{+} n_{-}\right\rangle=\hbar \omega\left(a_{+}^{\dagger} a_{+}+a_{-}^{\dagger} a_{-}+1\right)\left|n_{+} n_{-}\right\rangle$

$$
=\hbar \omega\left(\widehat{N}_{+}+\widehat{N}_{-}+1\right)\left|n_{+} n_{-}\right\rangle \doteq \hbar \omega\left(n_{+}+n_{-}+1\right)\left|n_{+} n_{-}\right\rangle .
$$

Here, it is noted that, like (3.36), that $n_{+} \geq 0$ and $n_{-} \geq 0$
In addition, we can rewrite the angular momentum (3.88) with the number operator of the rotation
(3.103) $\hat{L}_{3}=-i \hbar\left(a_{1}^{\dagger} a_{2}-a_{2}^{\dagger} a_{1}\right)=\left(a_{+}^{\dagger} a_{+}-a_{-}^{\dagger} a_{-}\right) \hbar$

This reformulates the eigenvalue equation for the angular momentum
(3.104) $\quad \hat{L}_{3}\left|n_{+} n_{-}\right\rangle=\hbar\left(a_{+}^{\dagger} a_{+}-a_{-}^{\dagger} a_{-}\right)\left|n_{+} n_{-}\right\rangle=\hbar\left(\widehat{N}_{+}-\widehat{N}_{-}\right)\left|n_{+} n_{-}\right\rangle \doteq \hbar\left(n_{+}-n_{-}\right)\left|n_{+} n_{-}\right\rangle$

The angular momentum operator \widehat{L}_{3} and the Hamilton operator \widehat{H}_{ω} has by (3.89) the same eigenstates $\left|n_{+} n_{-}\right\rangle$of the rotor oscillator. When the rotating circular oscillator description indices $(+,-)$ represent the same physical conditions as the Cartesian two-dimensional indices $(1,2)$ for the harmonic oscillator (3.82) that had been the tradition in the 20 'th century quantum mechanics, now here we must assume that the states are the same
(3.105)
$\left|n_{+} n_{-}\right\rangle \sim\left|n_{1} n_{2}\right\rangle$.
This despite the fact we know ${ }^{84}$ that $\left.\left|n_{+}\right\rangle \nmid\left|n_{1}\right\rangle, \quad\left|n_{-}\right\rangle \nmid\left|n_{2}\right\rangle, \quad\left|n_{+}\right\rangle \nmid\left|n_{2}\right\rangle, \quad\left|n_{-}\right\rangle \nmid n_{1}\right\rangle$.
For the ground state, we note
(3.106)
$|0,0\rangle=\left|0_{+} 0_{-}\right\rangle=\left|0_{1} 0_{2}\right\rangle$
Then we can write the excited states in accordance with (3.41) as
(3.107) $\quad\left|n_{+} n_{-}\right\rangle=\sqrt{\frac{1}{n_{+}!}} \sqrt{\frac{1}{n_{-}}}\left(a_{+}^{\dagger}\right)^{n_{+}}\left(a_{-}^{\dagger}\right)^{n_{-}}|0,0\rangle$

3.2.4. The Circular Rotating Oscillator Eigenvalues

Now we choose to describe the rotating plane oscillator with two new quantum numbers
(3.108) $n=n_{+}+n_{-} \geq 0, \quad n \in \mathbb{N}$ and $m=n_{+}-n_{-} \in[-n, n] \subset \mathbb{N}$

By this together with (3.102) and (3.104), the Hamilton and the angular momentum eigenvalue equations can be written
(3.109) $\quad \widehat{H}_{\omega}\left|n_{+} n_{-}\right\rangle \doteq \hbar \omega(n+1)\left|n_{+} n_{-}\right\rangle$
(3.110) $\quad \hat{L}_{3}\left|n_{+} n_{-}\right\rangle \doteq \hbar m\left|n_{+} n_{-}\right\rangle$
n and m are independent and specify together a unique eigenstate. For a given n and m, we see that if n_{+}increased by one, then correspondingly n_{-}decreased by one
The ground state applies $n=0 \Rightarrow m=0$.
The first excited energy eigenstate applies $n=1 \Rightarrow m= \pm 1$,
which is twice degenerated with the angular momentum either $+\hbar 1$ or $-\hbar 1$.
In this way for higher given n, the quantum number m jumps with 2

$$
m=-n, \quad-n+2, \quad-n+4, \quad \ldots \quad n-4, \quad n-2, \quad n
$$

We see that energy eigenstates are degenerated with $n+1$ different values of m.
The name of eigenstate can be reformulated as follows
(3.112) $|n, m\rangle \sim\left|n_{+} n_{-}\right\rangle=\left|n_{+}=\frac{n+m}{2}, n_{-}=\frac{n-m}{2}\right|$.
${ }^{84}$ The reason is that $\left|n_{ \pm}, 0\right\rangle$ is plane circular, and $\left|n_{j}\right\rangle$ is geometric linear in its perpendicular Cartesian approach
© Jens Erfurt Andresen, M.Sc. Physics, Denmark - 72- Research on the a priori of Physics
For quotation reference use: ISBN-13: 978-8797246931

The eigenvalue equations of the rotation plane oscillator for the Hamilton operator is written as
(3.113) $\quad \widehat{H}_{\omega}|n, m\rangle \doteq \hbar \omega(n+1)|n, m\rangle$, where $\quad n=n_{+}+n_{-}$,
and for the angular momentum operato
(3.114) $\quad \hat{L}_{3}|n, m\rangle \doteq \hbar m|n, m\rangle$, where $\quad m=n_{+}-n_{-}$

We repeat from (3.102) and (3.103), that the operators of this are
$\widehat{H}_{\omega}=\hbar \omega\left(a_{+}^{\dagger} a_{+}+a_{-}^{\dagger} a_{-}+1\right)$ and $\widehat{L}_{3}=\hbar\left(a_{+}^{\dagger} a_{+}-a_{-}^{\dagger} a_{-}\right)$, and compare with the stationary Schrödinger eigenvalue equation (2.67) $\quad \widehat{H}_{\omega}|\psi(t)\rangle \doteq E_{\omega}|\psi(t)\rangle$ and rewrite (3.82) as $\widehat{H}_{\omega}|n, m\rangle \doteq E_{\omega, n}|n, m\rangle, \quad$ which leads to the energy eigenvalues
(3.115) $E_{\omega, n}=(n+1) \hbar \omega$,

We look at the ground state energy $E_{\omega, 0}=\hbar \omega$. We assume that the ground state is without action - nothing happens. Therefore, I claim the synthetic judgment:
The idea of an angular frequency ω of a rotation circle oscillation in the plane is a noumenon (as a platonic concept) for any virtual energy $E_{\omega, 0}=\hbar \omega$ of the potential rotation plane with an expected angular frequency ω. - Anyway, I prefer $\hbar=1$ in such an abstraction concept.

3.2.4.2. The Rotating Circle Oscillator in Polar Coordinates

When we look at the angular momentum, we can form a more natural coordinate representation for a circle oscillator by polar quantities $(\rho, \phi) \in \mathbb{R}_{\circlearrowleft}^{2}$, rather than the Cartesian quantities $\left(q_{1}, q_{2}\right) \in \mathbb{R}_{\perp}^{2}$. From formula (3.48)
$q_{\omega}^{*}(r, t)=r e^{i \omega t}=r \cos (\omega t)+i r \sin (\omega t) \in \mathbb{C}$
with the two Cartesian dimensions (3.49) $q_{1}=r \cos (\phi)$ and $q_{2}=r \sin (\phi)$, where $\phi=\omega t$ in which, we have the classic image, wherein a circle oscillation the amplitude-radius
$r=\sqrt{q_{1}^{2}+q_{2}^{2}} \geq 0$ is assumed with constant mean average $\bar{r}=\langle\tilde{r}(\rho)\rangle$, and $\frac{\partial \tilde{r}}{\partial \phi}=\frac{\partial \tilde{r}}{\partial t}=0$
The new intuition is that, the real magnitude quantity $\tilde{r}(\rho) \in \mathbb{R}$ designed as a distribution function over a stochastic real radial polar coordinate $\forall \rho \in \mathbb{R}$ for the circular rotation oscillator Ψ_{ω}
(3.117) $q_{\omega}^{*}(\rho, t)=\tilde{r}(\rho) e^{i \omega t} \in \mathbb{C}$,
where the angular quantity $\phi=\omega t \in \mathbb{R}$ is the angle in the plane for the center polar coordinates
(3.118) $\quad q^{*}(\rho, \phi)=\tilde{r}(\rho) e^{i \phi}=\tilde{r}(-\rho) e^{i(\phi+\pi)}=\tilde{r}(-\rho) e^{i \phi} e^{i \pi}=-\tilde{r}(-\rho) e^{i \phi}, \quad$ as $e^{i \pi}=-1$

Here, it is noted, that a half-circle of rotation shifts the sign of the radial coordinate
$(\rho, \phi) \leftrightarrow(-\rho, \phi+\pi+2 \pi n), \quad$ a so-called parity inversion, ${ }^{85}$ of the radial coordinate $\rho \leftrightarrow-\rho$ in a plane, and the angular coordinate is periodic modulo $2 \pi, \quad(\rho, \phi) \leftrightarrow(\rho, \phi+2 \pi n)$.
(3.119) $\quad q^{*}(\rho, \phi)=q^{*}(\rho, \phi+2 \pi n)=\tilde{r}(\rho) e^{i \phi}=\tilde{r}(\rho) e^{i(\phi+2 \pi n)}$, for $\forall n \in \mathbb{Z}$, periodical conserved.

Usually, the definition interval is limited for polar coordinates to $\{\rho \in[0, \infty[, \phi \in[0,2 \pi[\}$, but here we will allow redundancy and thus allow all real coordinates ($\rho \in \mathbb{R}, \phi \in \mathbb{R}$). We not only allow $e^{i \omega t}$ just to repeat itself through the parameter t, but also that the radial parity operation $e^{i \pi}=-1$ as an inversion in the plane must be antisymmetric anti-identical
$\tilde{r}(\rho)=-\tilde{r}(-\rho) \quad \in \mathbb{R}$,
through a center. This means, the real radial function as the object in a plane for an oscillator entity Ψ_{ω} must be an odd function. Here it is noted that the two polar radial parity antagonists balance each other $\tilde{r}(\rho)+\tilde{r}(-\rho)=0$ in accordance with Newton's third law, ${ }^{86}$ while the antisymmetric difference represents the internal plane stress field probability distribution

[^0]For quotation reference use: ISBN-13: 978-8797246931

[^0]: To be precise we will below in this book call a parity inversion operation for an extension parity inversion of first grade directions. ${ }^{8}$ Newton's third law is following a line parity operation as inverse balance along a straight line
 C Jens Erfurt Andresen, M.Sc. NBI-UCPH, -73- Volume I, - Edition 2-2020-22, - Revision 6, December 2022

