

3.2. The Two-Dimensional Quantum Harmonic Oscillator

3.2.1. The Plane Super-positioned Hamilton Operato

Now we are starting from the Hamilton operator for the harmonic oscillator in one dimension (3.5) and writes the circular harmonic oscillator in two orthogonal line dimensions

$$
\widehat{H}_{\omega}=\widehat{H}_{\omega, 1}+\widehat{H}_{\omega, 2}=\frac{\hbar \omega}{2}\left(-\frac{\partial^{2}}{\partial q_{1}^{2}}+q_{1}^{2}\right)+\frac{\hbar \omega}{2}\left(-\frac{\partial^{2}}{\partial q_{2}^{2}}+q_{2}^{2}\right) .
$$

This we rewrite with annihilation- and creation-operators from (3.16) and further the number operator (3.30) and (3.33) for the two-dimensional Hamilton operator
(3.81) $\quad \widehat{H}_{\omega}=\hbar \omega\left(a_{1}^{\dagger} a_{1}+\frac{1}{2}\right)+\hbar \omega\left(a_{2}^{\dagger} a_{2}+\frac{1}{2}\right) \quad=\left(\widehat{N}_{1}+\widehat{N}_{2}+1\right) \hbar \omega$

Using the eigenvalue equation (3.21) rewritten with the notation $|n\rangle:=\left|\psi_{n}\right\rangle$,
$\widehat{H}_{\omega, i}\left|n_{i}\right\rangle \doteq E_{\omega, n_{i}}\left|n_{i}\right\rangle, \quad$ with eigenvalues from (3.29) $\quad E_{\omega, n_{i}}=\left(n_{i}+\frac{1}{2}\right) \hbar \omega$
and further with a composite state $\left|n_{1}, \mathrm{n}_{2}\right\rangle:=\left|n_{1}\right\rangle\left|\mathrm{n}_{2}\right\rangle=\left|n_{1}\right\rangle \otimes\left|\mathrm{n}_{2}\right\rangle$, in the double Hilbert space $\mathcal{H} \otimes \mathcal{H}(\S 2.2 .3,2.2 .4)$ that also is a Hilbert space, we can write the eigenvalue equation

$$
\widehat{H}_{\omega}\left|n_{1}, n_{2}\right\rangle \doteq E_{\omega, n_{1}, n_{2}}\left|n_{1}, n_{2}\right\rangle
$$

with the following energy eigenvalues for the excited states

$$
E_{\omega, n_{1}, n_{2}}=\left(n_{1}+n_{2}+1\right) \hbar \omega
$$

The excited states $|n\rangle=\left|n_{1}, \mathrm{n}_{2}\right\rangle$ for $n=n_{1}+n_{2}$ of the two-dimensional plane harmonic circle oscillator have eigenvalues
$E_{\omega, n}=(n+1) \hbar \omega$
The ground state $n_{1}=0$ and $n_{2}=0 \Rightarrow n=0$ provides just eigenvalues $E_{\omega, 0}=\hbar \omega \in \mathbb{R}$. The next state $E_{\omega, 1}=\hbar \omega+\hbar \omega$ has degeneration in two cases

$$
\begin{equation*}
\left(n_{1}=1 \wedge n_{2}=0\right) \text { and }\left(n_{1}=0 \wedge n_{2}=1\right) . \tag{3.85}
\end{equation*}
$$

The degeneration is $(n+1)$ of the state $|n\rangle=\left|n_{1}, \mathrm{n}_{2}\right\rangle$ is illustrated by the following table

Circular			$n=n_{1}+n_{2}$	0	1	1	2	2	2	3	3	3	3	4	4	4	4	4	\ldots
\leftrightarrow	\downarrow	\checkmark	n_{1}	0	1	0	1	2	0	3	0	2	1	4	0	3	1	2	\ldots
\uparrow	\leftrightarrow	U	n_{2}	0	0	1	1	0	2	0	3	1	2	0	4	1	3	2	\ldots
Degeneration			$n+1$	1		2		3								5			\ldots

as, $n_{1} \geq 0$ and $n_{2} \geq 0$ by (3.36) we have $n \geq 0$.

3.2.2. The Angular Momentum Operator

From the classic angular momentum written as a vector product $\vec{L}=\vec{r} \times \vec{p}$, we write the angular momentum coordinate along the rotational axis using coordinates of the circle rotation in its transversal plane in accordance with the first expression in (3.66)
$L_{3}=\left(q_{1} p_{2}-q_{2} p_{1}\right)$
The quantities q and p can be rewritten from (3.2)-(3.3) using the formulation (3.13) as operators

$$
\hat{q}_{j}=\frac{1}{\sqrt{2}}\left(a_{j}+a_{j}^{\dagger}\right) \sim q_{j} \quad \text { and } \quad \hat{p}_{j}=i \frac{1}{\sqrt{2}}\left(a_{j}^{\dagger}-a_{j}\right) \sim \frac{1}{\hbar} p_{j}
$$

By this, we write the quantum angular momentum operator

$$
\hat{L}_{3}=i \frac{\hbar}{2}\left(a_{1}+a_{1}^{\dagger}\right)\left(a_{2}^{\dagger}-a_{2}\right)-i \frac{\hbar}{2}\left(a_{2}+a_{2}^{\dagger}\right)\left(a_{1}^{\dagger}-a_{1}\right)=-i \hbar\left(a_{1}^{\dagger} a_{2}-a_{2}^{\dagger} a_{1}\right)
$$

Here, we have used the commutator relations $\left[a_{1}^{\dagger}, a_{2}^{\dagger}\right]=\left[a_{2}, a_{1}\right]=\left[a_{1}^{\dagger}, a_{2}\right]=\left[a_{2}^{\dagger}, a_{1}\right]=0$, see (2.71),

As we notice, that we also apply $\left[a_{1}^{\dagger} a_{2}, a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}\right]=0$ and $\left[a_{2}^{\dagger} a_{1}, a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}\right]=0$, we can deduce that \widehat{L}_{3} commute with Hamilton operator \widehat{H}_{ω} (3.81)
$\left[\hat{L}_{3}, \widehat{H}_{\omega}\right]=0$
Thereby eigenstates for \widehat{H}_{ω}, will also be eigenstates for \widehat{L}_{3}, we just need to find a common reference basis in a double Hilbert space $\mathcal{H} \otimes \mathcal{H}$, consisting of stationary states.
Energy eigenvalues $E_{\omega, n}=(n+1) \hbar \omega$ above (3.84) represent degenerated states- modes (3.82), and it will be natural to let the degeneration correspond to individual eigenvalues of the angular momentum operator \hat{L}_{3}.
Above we took a start from the two field coordinate dimensions represented by $\left(q_{1}, q_{2}\right)$ with the corresponding quantum operators $a_{1}, a_{2}, a_{1}^{\dagger}, a_{2}^{\dagger}$
We have two degenerated oscillating rotation options:
The progressive oscillator rotation we wrote in (3.48) as the conjugate from (1.60)
$q_{\omega}(t)=r e^{i \omega t}=r \cos (\omega t)+i r \sin (\omega t) \quad \in \mathbb{C}$
That is supplemented by the retrograde oscillator rotation, which then becomes
$q_{\omega}(t)=r e^{-i \omega t}=r \cos (\omega t)-i r \sin (\omega t) \quad \in \mathbb{C}$
From the above-mentioned degeneration of states (3.85) $(n+1)=2$ for $n=1$, we also see a two-degeneration associated with rotation, progressive and retrograde. Therefore, we will indices with the value + or - for orientation of rotation. For rotation quantities we write
$q_{\omega,+}=q_{\omega}^{*}(t)=r e^{i \omega t} \quad$ respectively $\quad q_{\omega,-}=q_{\omega}(t)=r e^{-i \omega t}$

3.2.3. Ladder Operators of the Plane Quantum Mechanical Harmonic Circle Oscillator

To find a new ${ }^{83}$ formulation of quantised eigenstates for \hat{L}_{3}
we introduce the two annihilation operators for rotation.
$a_{+}:=\frac{1}{\sqrt{2}}\left(a_{1}-i a_{2}\right)$,
$a_{-}:=\frac{1}{\sqrt{2}}\left(a_{1}+i a_{2}\right)$
and the corresponding two Hermitian adjoined creation operators
$a_{+}^{\dagger}:=\frac{1}{\sqrt{2}}\left(a_{1}^{\dagger}+i a_{2}^{\dagger}\right)$,
$a_{-}^{\dagger}:=\frac{1}{\sqrt{2}}\left(a_{1}^{\dagger}-i a_{2}^{\dagger}\right)$
For these we note the following commutator relations
$\left[a_{+}, a_{+}^{\dagger}\right]=\left[a_{-}, a_{-}^{\dagger}\right]=1$.
$\left[a_{+}^{\dagger}, a_{-}^{\dagger}\right]=\left[a_{+}, a_{-}\right]=\left[a_{+}^{\dagger}, a_{-}\right]=\left[a_{+}, a_{-}^{\dagger}\right]=0$.
From definitions (3.93) to (3.95), we get
$a_{+}^{\dagger} a_{+}=\frac{1}{2}\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}+i a_{2}^{\dagger} a_{1}-i a_{1}^{\dagger} a_{2}\right)$
$a_{-}^{\dagger} a_{-}=\frac{1}{2}\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}-i a_{2}^{\dagger} a_{1}+i a_{1}^{\dagger} a_{2}\right)$
By adding these two equations we get the number operators, see also (3.30)
(3.100) $a_{+}^{\dagger} a_{+}+a_{-}^{\dagger} a_{-}=a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2} \sim \widehat{N}_{+}+\widehat{N}_{-}=\widehat{N}_{1}+\widehat{N}_{2}$

We have introduced two new number operators for the rotation circle oscillator

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

