– I The	Time in the Natural Space – 3. The Quantum Harmonic Oscillator – 2.3. A classical Formulation of the Cyclic	Ge	- 3.1.	9. Quantising the Angular M
3.1.8.	Classical Angular Momentum From classical physics, we have that the angular momentum can be written (by Gips cross product)	esea	3.1.9.2. Differential Operator i For later use, we will a	
(3.62)	$\vec{L} = \vec{r} \times \vec{p} .$	ic C	(3.69)	$\nabla = \sum_{j} \frac{\partial}{\partial q_{j}} = \frac{\partial}{\partial q_{1}}$
(3.63)	By the coordinates of the circle oscillation in the transversal plane of the rotation axis, this is written as a coordinate along the <i>direction</i> $\vec{\omega}$ of this rotation axis, the third axis: $L_3 = (q_1p_2 - q_2p_1),$	h on Tritiqu	(3.70)	then the angular mome $\vec{L} = \vec{q} \times \vec{p} = \vec{q} \times$ To find an angular mo
	where, the three Cartesian coordinates apply $\vec{z} = \vec{z}$	e	(3.71)	$L_3 = (q_1 p_2 - q_2 p_1)$
(3.64)	$\tilde{q} \sim (q_1, q_2, 0) \in \mathbb{R}^3_{\perp}, \tilde{p} \sim (p_1, p_2, 0) \in \mathbb{R}^3_{\perp} \text{and} L = L_3 \sim (0, 0, L_3) \in \mathbb{R}^3_{\perp}.$	h((3.72)	$L_2 = (q_3 p_1 - q_1 p_3)$
	Just as we in section 1.7.6 introduced the inertia factor oscillator $m_{\omega} \leftarrow I$ in defining the internal momentum $p_{\omega} = m_{\omega} \dot{q}_{\omega} = m_{\omega} \frac{\partial}{\partial t} q_{\omega} = -i\omega m_{\omega} q_{\omega}$, (1.76), we will look at a similar ratio of the angular momentum. We write	e a p	(3.73)	$L_1 = (q_2 p_3 - q_3 p_2)$ Using the commutator
(3.65)	$L_3 = I_3 \omega$, where I_3 is a factor for the moment of inertia. For an axial rotation, the particular moment of inertia ⁷⁹ is characterised as $I_2 = mr^2$, where we	orio Iathe	(3.74)	we can find the comm $\begin{bmatrix} \hat{L}_1, \hat{q}_3 \end{bmatrix} = \begin{bmatrix} (\hat{q}_2 \hat{p}_3 - \hat{p}_3) \end{bmatrix} = \begin{bmatrix} \hat{q}_2 \hat{p}_3 - \hat{p}_3 \end{bmatrix} = \begin{bmatrix} \hat{q}_2 \hat{p}_3 - \hat{p}_3 \end{bmatrix}$
(3.66)	count an inertia factor <i>m</i> to a certain radius <i>r</i> , we can write the angular momentum as $I_{n} = (a, n, -a, n) = I_{n} (a, \dot{a}, -a, \dot{a})/r^{2} = mr^{2}(a, \dot{a}, -a, \dot{a})/r^{2} = m(a, \dot{a}, -a, \dot{a})$	ri o matic	(3.76)	$[L_1, p_3] = [(q_2p_3 - q_2p_3)]$ and from this the comm $[\hat{L}_1, \hat{L}_2] = [\hat{L}_1, (\hat{q}_3p_3)]$
(3.00)	$L_{3,r} = (q_1p_2 - q_2p_1) = I_{3,r} \omega = I_{3,r} (q_1q_2 - q_2q_1)/r = mr (q_1q_2 - q_2q_1)/r = m(q_1q_2 - q_2q_1).$ Just as we for the Hamilton function avoided \dot{q} , we will continue with the momentum p , that implicitly hides m and thereby also hides I_3 in the expression for $L_3 = q_1p_2 - q_2p_1$.	f Ph	(3.77)	and similar permutatin $\begin{bmatrix} \hat{L}_1, \hat{L}_2 \end{bmatrix} = i\hbar \hat{L}_3,$
3.1.9.	Quantising the Angular Momentum	ias		We see that the three d
	Here in section 3.1.7 above the regular circular motion is outlined in a classic image. The cyclic circle oscillator in the transversal plane is described in two dimensions (3.49) for points $(q_{\omega,1}, q_{\omega,2}) \in \mathbb{R}^2_{\perp}$ and at (3.51) for points $(\dot{q}_{\omega,1}, \dot{q}_{\omega,2}) \in \mathbb{R}^2_{\perp}$, as we transform to the momentum points $(p_{\omega,1}, p_{\omega,2}) \in \mathbb{R}^2_{\perp}$ according to (3.66). All these points are judged to be in the same transversal plane for the physical <i>entity</i> Ψ_{ω} . As the classical <i>quantities</i> in (3.63)-(3.66) implicitly depend on ω in Ψ_{ω} , we here marked them	SICS oning		even though we see the In the rest of this chap represent this by one a This leads us to presur vanish. In this case, cy concentrate our efforts
	with ω as indices just as introduced in (3.49). Now we will <i>quantise</i> these classical field <i>quantities</i> by the transformation (3.2)		(3.78)	$\hat{L}_3 = (\hat{q}_1 \hat{p}_2 - \hat{q}_2 \hat{p}_1)$
(3.67) (3.68)	$q_j \sim \sqrt{\frac{m\omega}{\hbar}} \cdot q_{\omega,j} $, and their canonical conjugated <i>mode</i> operators from (3.3) $\hat{p}_j = -i\frac{\partial}{\partial q_j}$, with $j = 1,2$ Inspired by [7], [8] this will now be further developed directly from the two real scalar fields q_1 and q_2 called the <i>quantum mechanical real field quantities</i> . In the plane for the abstract idea (noumenon) of the circle oscillator we are assuming the two	ens Erfu Edition 2,		Therefore, we will interplane. (In the central p cycles are required to a As you may already kn - A line segment q j chronometric measure We will elaborate furth
	Cartesian perpendicular and algebraic orthogonal real scalar field <i>quantities</i> q_1 and q_2 as isotropic, in the sense of isometric measure with the same standard $ q_{\omega,1} = q_{\omega,2} $, so the idea of a circle ⁸⁰ in the plane are met. We must maintain our intuition that all these objects (points) of types (q_1, q_2) and (\hat{p}_1, \hat{p}_2) are belonging to the same transversal plane perpendicular to a thought (noumenon) rotation axis, that we consider orthogonal in our algebraic calculations. –	≥ 2020-22	(3.79)	 When we later in characteristic rule When we later in characteristic rule L = ħq ∧ ∇. That is a unit <i>quant</i>
For an axial rotating disc with the mass <i>m</i> and radius <i>r</i> the moment of inertia $I_3 = \frac{1}{2}mr^2$. In general, for a rigid body with a maximum radius R from CM, $I_3 = Cmr^2$, where $0 < C \le 1$, which is dependent on the distribution of the mass. This means that ellipses or elliptical oscillations, etc. not allowed for this symmetry just for this circular oscillator idea.			 ⁸¹ For a bett ⁸² The production This is n 	er understanding of this, the uct symbol \land is the Grassmanuch simpler than the pseudo
© Jens	Erfurt Andresen , M.Sc. Physics, Denmark – 68 – Research on the a priori of Physics – December 2022		© Jens E	rfurt Andresen, M.Sc. NBI-UCPH
	For quotation reference use: ISBN-13: 978-8797246931	-		For quotation re

ferential Operator in 3 Dimensions r later use, we will associate these with a vector operator form $\vec{\hat{q}}$ and $\vec{\hat{p}} = -i\hbar \nabla$, where $\nabla = \sum_{j} \frac{\partial}{\partial q_{j}} = \frac{\partial}{\partial q_{1}} + \frac{\partial}{\partial q_{2}} + \frac{\partial}{\partial q_{3}}$ n the angular momentum vector operator will look like this⁸¹ $\vec{\hat{L}} = \vec{\hat{q}} \times \vec{\hat{p}} = \vec{\hat{q}} \times (-i\hbar\nabla) = -i\hbar(\vec{\hat{q}} \times \nabla)$ find an angular momentum operator component v $L_3 = (q_1 p_2 - q_2 p_1) \leftrightarrow$ $\hat{L}_3 = (\hat{q}_1 \hat{p}_2 - \hat{q}_2 \hat{p}_3)$ $L_2 = (q_3 p_1 - q_1 p_3) \leftrightarrow \qquad \hat{L}_2 = (\hat{q}_3 \hat{p}_1 - \hat{q}_1 \hat{p}_2)$ $L_1 = (q_2 p_3 - q_3 p_2) \leftrightarrow \qquad \hat{L}_1 = (\hat{q}_2 \hat{p}_3 - \hat{q}_3 \hat{p}_2)$ ing the commutator relation (2.71) $\left[\hat{q}_{ij}, \hat{p}_{k}\right] = i\hbar\delta_{ij}$ can find the commutator relations for these angul $[\hat{L}_1, \hat{q}_3] = [(\hat{q}_2 \hat{p}_3 - \hat{q}_3 \hat{p}_2), \hat{q}_3] = +\hat{q}_2[\hat{p}_3, \hat{q}_3] =$ $[\hat{L}_1, \hat{p}_3] = [(\hat{q}_2 \hat{p}_3 - \hat{q}_3 \hat{p}_2), \hat{p}_3] = -[\hat{q}_2, \hat{p}_3]\hat{p}_2 =$ d from this the commutation of angular componen $[\hat{L}_1, \hat{L}_2] = [\hat{L}_1, (\hat{q}_3 \hat{p}_1 - \hat{q}_1 \hat{p}_3)] = [\hat{L}_1, \hat{q}_3]\hat{p}_1 - \hat{q}_1$ d similar permutating the indices $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ we g $[\hat{L}_2, \hat{L}_3] = i\hbar \hat{L}_1,$ $\left[\hat{L}_{1},\hat{L}_{2}\right]=i\hbar\hat{L}_{3},$ e see that the three different angular momentum components for one *entity* do not commute, en though we see they are strongly interconnected.

the rest of this chapter 3, we will look at one *direction* from the past to the future. We will present this by one angular momentum *direction* vector \vec{L}_3 that in principle is free in space. is leads us to presume, that the other transversal components $\hat{L}_1 \rightarrow \vec{L}_1 = 0$ and $\hat{L}_2 \rightarrow \vec{L}_2 = 0$ hish. In this case, cyclic things happen in the transversal plane with indices $1\leftrightarrow 2$ and we icentrate our efforts around $(3.66) \rightarrow (3.71)$

$$\hat{L}_3 = (\hat{q}_1 \hat{p}_2 - \hat{q}_2 \hat{p}_1) = -i\hbar \left(\hat{q}_1 \frac{\partial}{\partial q_2} - \hat{q}_2 \frac{\partial}{\partial q_1} \right)$$

erefore, we will interpret the fundamental cyclic angular mode as a unit circle oscillation in one ne. (In the central particular case Kepler conic section is aloud, special periodical elliptical eles are required to achieve an oscillation).

- you may already know, Kepler's Second Law is the most fundamental law of physic: A line segment **q** joining a planet and the Sun sweeps out equal angular areas $\mathbf{q} \wedge \nabla$ per
- chronometric measure, $-^{82}$
- will elaborate further on this fundament throughout this book.
- When we later in chapter 6.5 look into geometric algebra you may interpret an angular momentum operator (3.70) just as a bivector operator

That is a unit *quantum* if $|\mathbf{q}| = |\vec{q}| = 1$ and $\hbar = 1$.

derstanding of this, the reader can e.g., consult Merzbacher [9]C11,p.233ff. For later use see below (6.266)-(6.267). mbol \wedge is the Grassmann exterior (outer) product used later on in this book for *qualities* of higher grades, see \neg . simpler than the pseudo vector formulation (3.70) using the Gips cross product in a 'world' of pure 1-vectors.

- 69

For quotation reference use: ISBN-13: 978-879724693

antising the Angular Momentum - 3.1.9.2 Differential Operator in 3 Dimensions -

we use e.g., (3.63)

$$_{1}) = -i\hbar \left(\hat{q}_{1} \frac{\partial}{\partial q_{2}} - \hat{q}_{2} \frac{\partial}{\partial q_{1}} \right),$$

$$_{3}) = -i\hbar \left(\hat{q}_{3} \frac{\partial}{\partial q_{1}} - \hat{q}_{1} \frac{\partial}{\partial q_{3}} \right),$$

$$_{2}) = -i\hbar \left(\hat{q}_{2} \frac{\partial}{\partial q_{3}} - \hat{q}_{3} \frac{\partial}{\partial q_{2}} \right).$$

$$_{jk}, \quad [\hat{q}_{j}, \hat{q}_{k}] = 0 , \quad [\hat{p}_{j}, \hat{p}_{k}] = 0$$

$$ar momentum components like [9](11.4)$$

$$-i\hbar \hat{q}_{2}, \qquad [\hat{L}_{1}, \hat{q}_{1}] = 0,$$

$$ts$$

$$[\hat{L}_{1}, \hat{p}_{1}] = i\hbar \hat{L}_{2}$$

$$as [9](11.5)$$