Geometric Critique

of Pure

Mathematical Reasoning

Edition

N

 \bigcirc

N

2020-22

ens

Erfurt

Andres

en

Research

on

th

 $\overline{\mathbf{O}}$

β

priori

Of

Physics

(3.5)

(3.6)

- 3.1.2. The Quantum Real Scalar Field for the Linear Harmonic Oscillator - 2.3.1.3 The Lagrange Function for the Cyclical

3. The Quantum Harmonic Oscillator

We start with the Hamilton function (2.91) for the classical harmonic oscillator

(3.1)
$$H_{\omega}(q_{\omega}, p_{\omega}) = \frac{p_{\omega}^2}{2 m_{\omega}} + \frac{1}{2} m_{\omega} \omega^2 q_{\omega}^2$$

In quantum mechanics, we try, to convert it to an operator \hat{H} that can meet the stationary Schrödinger eigenvalue equation $\widehat{H}|\psi\rangle \doteq E_{\omega}|\psi\rangle$,

3.1.2. The Quantum Real Scalar Field for the Linear Harmonic Oscillator

We transform (3.1) \leftrightarrow (2.91) to the operator edition, by first rewriting the *quantity* $q_{\omega} \in \mathbb{C}$ to a *real field quantity* $q \in \mathbb{R}^{67}$, where we use Planck's constant \hbar , which is marked green.

(3.2)
$$q \sim \sqrt{\frac{m\omega}{\hbar}} \cdot |q_{\omega}|$$
, or quadratic as the last term of (3.2)

Then we rewrite the momentum p_{ω} from this normalised *field quantity q* using the *momentum* operator (2.81) in accordance with (2.71) $[q, \hat{p}] = i$

(3.3)
$$\hat{p} = -i\frac{\partial}{\partial q} = -i\left(\frac{\partial q_{\omega}}{\partial q}\right)\frac{\partial}{\partial q_{\omega}} \stackrel{\hbar}{\sim} -i\frac{1}{\hbar}\sqrt{\frac{\hbar}{m\omega}}$$

 $(p_{\omega})^2 \sim -\hbar m\omega \frac{\partial^2}{\partial q^2}, \quad \text{because} \quad p_{\omega}$

By substitutions in $H_{\omega}(q, p)$ we rewrite the Hamilton operator \widehat{H}_{ω} for the harmonic oscillator

$$(3.4) H_{\omega} = \frac{p_{\omega}^2}{2m_{\omega}} + \frac{1}{2}m_{\omega}\omega^2 q_{\omega}^2 \sim \hat{H}_{\omega} = \frac{\hbar m\omega}{2m}\frac{\partial^2}{\partial q^2} + \frac{\hbar m\omega^2}{2m\omega}q^2 = \frac{\hbar\omega}{2}(\hat{p}(\hat{p}) + q^2) = \frac{\hbar\omega}{2}\left(-\frac{\partial^2}{\partial q^2} + q^2\right).$$

We note that a local external m has no impact as it is not included in the last formulation.⁶⁸ To prevent the classical Hamilton function loses its meaning, we can choose an internal impedance factor $m_{\omega} \neq 0$ by choosing $m_{\omega}c^2 \sim \hbar\omega$, (c=1), imply that $q \sim \omega |q_{\omega}|$ and $p_{\omega} \sim \hbar\omega \hat{p}$. (refer Figure 1.3) In this way, you can understand a cyclic oscillation in a quantum-mechanical field equivalent to a 'classic' harmonic oscillator. – I now propose a new interpretation: We intuit $q \in \mathbb{R}$ as a purely *isotropic scalar field* with **no** specific *direction* in any space! The Hamilton operator for the harmonic oscillator of the *field quantity* q is now

$$\widehat{H}_{\omega} = \frac{\hbar\omega}{2} \left(-\frac{\partial^2}{\partial q^2} + q^2 \right) = \frac{\hbar\omega}{2} \left(q^2 - \frac{\partial^2}{\partial q^2} \right)$$

Hence, we write the stationary Schrödinger eigenvalue equation as

$$\frac{\hbar\omega}{2} \left(-\frac{\partial^2}{\partial q^2} + q^2 \right) |\psi(q)\rangle \doteq E_{\omega} |\psi(q)\rangle$$

The expression in parenthesis can be rewritten as

(3.7)
$$q^2 - \frac{\partial^2}{\partial q^2} = \left(q - \frac{\partial}{\partial q}\right) \left(q + \frac{\partial}{\partial q}\right) + \frac{\partial}{\partial q}q - q\frac{\partial}{\partial q}$$

The last two terms constitute the commutator

(3.8)
$$\left[\frac{\partial}{\partial q}, q\right] = 1$$
, because $\left[\frac{\partial}{\partial q}, q\right]\psi = \frac{\partial}{\partial q}(q\psi) - q\frac{\partial}{\partial q}\psi$
(3.9) $q^2 - \frac{\partial^2}{\partial q^2} = \left(q - \frac{\partial}{\partial q}\right)\left(q + \frac{\partial}{\partial q}\right) + 1$

Now the stationary Schrödinger eigenvalue equation (3.6) is written as

1	
	⁶⁷ A <i>field</i> is a commutative ring of numbers, e.g., scalars as real \mathbb{R} or complex The reason for a real scalar field $q \in \mathbb{R}$ here is, that we first look at a <i>linea</i>
	$\tilde{q}_{\omega} \in \mathbb{R}$ of $q_{\omega}(t) = \tilde{q}_{\omega} e^{-i\omega t} \in \mathbb{C}$. The blue quantity q indicate its origin from the second s
	⁶⁸ This is the big shift that happens when you go from Classical Mechanics to
	© Jens Erfurt Andresen, M.Sc. NBI-UCPH, $-61-$

For quotation reference use: ISBN-13: 978-879724693

(e.g. see. (2.64) to (2.67)).

- $3.1) \ \hbar \omega q^2 \equiv m \omega^2 |q_{\omega}|^2 = m \omega^2 (q_{\omega}^* q_{\omega}) \ge 0.$

 $\frac{\partial}{\partial q_{\omega}} \sim \sqrt{\frac{1}{\hbar m \omega}} p_{\omega}$, or quadratic $\sqrt{\hbar m \omega} \left(-i \frac{\partial}{\partial q} \right) = \sqrt{\frac{m \omega}{\hbar}} \left(-i \hbar \frac{\partial}{\partial q} \right)$

- $\psi = q \frac{\partial}{\partial a} \psi + \frac{\partial q}{\partial a} (\psi) q \frac{\partial}{\partial a} \psi = 1(\psi)$, therefore

x C numbers, that therefore are called *scalar fields*. *ar* harmonic oscillator. And omit the complex part $q \leftrightarrow$ from a *quantity* scalar field operator $\hat{q} = i \frac{\partial}{\partial r}$ o modern quantum field theory