

Similar to (1.82), (1.83) and (1.87), (1.88) we include the useful formulations
(2.85) $\left\langle p_{j}\right| \hat{q}_{j}\left|p_{j}^{\prime}\right\rangle=i \frac{\partial}{\partial p_{j}} \cdot \delta\left(p_{j}-p_{j}^{\prime}\right)$,
(2.86) $\quad\left\langle q_{j}\right| \hat{p}_{j}\left|q_{j}^{\prime}\right\rangle=-i \frac{\partial}{\partial q_{j}} \cdot \delta\left(q_{j}-q_{j}^{\prime}\right)$

Here δ is the Dirac delta function

2.2.7.2. The Measurable Expectation Values of Quantum Mechanics

For a physical entity Ψ with observable or at least identifiable quantities q_{j}, with canonical conjugated momenta p_{j}, we must expect different probabilities
$\psi_{q_{j}}=\psi\left(q_{j}\right)$ and $\psi_{p_{j}}=\psi\left(p_{j}\right)$ to measure the different variations in their values.
Most often the probability functions are described abstract as ψ, where the dependency argument input is omitted, but these must be implicit given the context
A real quantity q_{j} represented by the Hermitian operator \hat{q}_{j} can then act on the associated probability function $\psi, \hat{q}_{j}|\psi\rangle$. Just as defined in (2.45) we write the expectation value of the observable quantity for the operator \hat{q}_{J}

$$
\left\langle\hat{q}_{j}\right\rangle_{\psi}=\langle\psi| \hat{q}_{j}|\psi\rangle=\left\langle\psi \mid \widehat{q}_{j} \psi\right\rangle \sim \int_{-\infty}^{\infty} \psi^{*}(y) \hat{q}_{j} \psi(y) d y \sim \int_{-\infty}^{\infty} q_{j}|\psi|^{2} d q_{j}
$$

Generally, we just write the expectation value of $\quad \hat{q}_{j}$ as $\langle\psi| \hat{q}_{j}|\psi\rangle$
Similarly, writing the observable expectation value of $\quad \hat{p}_{j}$ as $\langle\psi| \hat{p}_{j}|\psi\rangle$

2.3. A classical Formulation of the Cyclic Rotation Oscillation

2.3.1. Hamilton Formulation for the Harmonic Oscillator

In section 1.7.6 for the oscillator in physics, we got formulas for $\dot{q}_{\omega}(1.76)$ and $\dot{p}_{\omega}(1.79)$. Inserting these in Hamilton's canonical equations (2.21) and (2.22) we get
$\dot{q}_{\omega}=\frac{\partial H_{\omega}}{\partial p_{\omega}}=\frac{p_{\omega}}{m_{\omega}}$
(2.89) $\quad \dot{p}_{\omega}=-\frac{\partial H_{\omega}}{\partial q_{\omega}}=-m \omega^{2} q_{\omega}$

Now we can create the simplest possible Hamilton function for the harmonic oscillator From the stationary differential (2.20) $\mathrm{d} H=\dot{q} \mathrm{~d} p-\dot{p} \mathrm{~d} q$, and rewriting by (1.76) to
$\mathrm{d} H_{\omega}=\dot{q}_{\omega} \mathrm{d} p_{\omega}+m_{\omega} \omega^{2} q_{\omega} \mathrm{d} q_{\omega}$,
we get by antiderivative integration
(2.91) $\quad H_{\omega}\left(q_{\omega}, p_{\omega}\right)=\frac{1}{2} p_{\omega} \dot{q}_{\omega}+\frac{1}{2} m_{\omega} \omega^{2} q_{\omega}{ }^{2}=\frac{p_{\omega}^{2}}{2 m_{\omega}}+\frac{1}{2} m_{\omega} \omega^{2} q_{\omega}{ }^{2}$

To make this equation reliable, we must from the definition require $p_{\omega}{ }^{2} \equiv p_{\omega} m \dot{q}_{\omega}$
The last form has the advantage that the parameter t is not included. But then there is a minor problem, the first term in the sum H_{ω} of this formula is undefined if $m_{\omega}=0 .{ }^{66}$

2.3.1.2. The Energy of an Oscillato

Classic, the first part in the sum has been attributed to the kinetic energy T, and the second part has been attributed to the potential energy V, so $H=T+V$, whereby

$$
T_{\omega}=\frac{1}{2} p_{\omega} \dot{q}_{\omega}=\frac{\left(p_{\omega}\right)^{2}}{2 m_{\omega}} \quad \text { and } \quad V_{\omega}=\frac{1}{2} m_{\omega} \omega^{2} q_{\omega}^{2}, \quad \text { hence } \quad H_{\omega}=T_{\omega}+V_{\omega}
$$ Since the first part is written $T_{\omega}=\frac{1}{2} p_{\omega} \dot{q}_{\omega}$, we from (2.17) conclude $H_{\omega}=2 T_{\omega}-L_{\omega}$ and from which we draw the portable energy

$$
L_{\omega}=T_{\omega}-V_{\omega}
$$

Hereby, L_{ω} represent the difference between kinetic and potential energy
Stated differently, the portable energy L_{ω} of an entity Ψ_{ω} in physics consists of the free kinetic energy T_{ω}, minus the energy V_{ω} of the bindings to some fundamental surroundings, We will distinguish between; the internal bindings of the oscillator entity Ψ_{ω}, that has a proportionality factor we call m_{ω}; and an external binding energy to the surroundings V_{Ψ} of a total physical entity Ψ characterised by a proportionality factor m, that in classical physics is called the mass of Ψ. It is important in the following to distinguish between the internal factor m_{ω} of the oscillator, from any external m, for a total physical entity Ψ.

2.3.1.3. The Lagrange Function for the Cyclical Rotating Oscillator

By using $T_{\omega}=\frac{1}{2} \dot{q}_{\omega} p_{\omega}=\frac{1}{2} m_{\omega} \dot{q}_{\omega}{ }^{2}$ for the first part, we can now rewrite (2.93) to
$L_{\omega}\left(q_{\omega}, \dot{q}_{\omega}\right)=\frac{1}{2}\left(\dot{q}_{\omega}^{2}-\omega^{2} q_{\omega}^{2}\right)$
The easy way to set $L_{\omega}=0$ e.g. for a photon is to set $m_{\omega}=0$, but then we lose the knowledge of the structure for the oscillator, on the other hand, the inner cyclical balance can be maintained by demanding $\frac{1}{2}\left(\dot{q}_{\omega}^{2}-\omega^{2} q_{\omega}^{2}\right)=0$, hence we achieve that $L_{\omega}(q, \dot{q})=0$, independent of $m_{\omega} \neq 0$.
When both parts $\dot{q}_{\omega}{ }^{2}$ and $\omega^{2} q_{\omega}^{2}$ are constant and equal it is a circular oscillation. Thus,
the entity $\Psi_{\omega} \leftrightarrow \frac{1}{2}\left(\left(\dot{q}_{\omega}\right)^{2}-\omega^{2} q_{\omega}^{2}\right)=0$ as a subject is interpreted as a cyclic oscillation through the complex unit circle $e^{ \pm i \omega t}$ as an object to our intuition.
Its noumenon (idea in science) is the Euler circle as a primary quality of a plane idea in physics. Another way of expressing $L_{\omega}(q, \dot{q})=0$ is simply by letting $T_{\omega}-V_{\omega}=0$ in (2.93).

To let the Lagrange function disappear, $L_{\omega}=0$ for a harmonic oscillator is the same as to claim, that it doesn't carry any portable energy through the surroundings in physics, but that the interna binding energy V_{ω} balance the kinetic energy T_{ω}, that is
$L_{\omega}=T_{\omega}-V_{\omega}=0$.
When the harmonic oscillator has non-external binding $V_{\omega}^{\text {extern }}=0$ to the surroundings, it will move freely through the surroundings with kinetic energy T_{ω}.

In this way, the free harmonic oscillator Ψ_{ω} has the total energy as the Hamilton function

$$
H_{\omega}=T_{\omega}+V_{\omega}=2 T_{\omega}, \quad \text { in that } \quad L_{\omega}=T_{\omega}-V_{\omega}=0
$$

This gives the idea of the nature of light, through electromagnetic oscillation, which will now be described by employing of the quantum harmonic oscillator joint by the noumenon idea of a rotating circle oscillation in a quantum field.

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

