Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

2.2.6. The Frequency-energy Quantised Evolution Parameter

In addition to appointing the given quantity ω for the oscillator to be an operator $\widehat{\omega}$,
I also promote the development parameter $t \in \overrightarrow{\mathbb{R}}$ to correspond with an evolution quantity $q_{0}=q_{0}(t) \sim c \cdot t$, not only for the individual oscillator, but for all the oscillators in the local physical entity Ψ.
Is the measure of q_{0} in the same unit as t, e.g. [s], you can apply $c= \pm 1$, thus $q_{0} \sim \pm t$
For each oscillator Ψ_{ω} we now define an expression for an energy mode operator
$\hat{p}_{0}=\hat{p}_{0}(\omega):=\widehat{\omega}=i \frac{\partial}{\partial t}=i \frac{\hbar}{c} \frac{\partial}{\partial q_{0}}$.
($\hbar=1$)
Now I will appoint $\hat{q}_{0} \sim c \cdot t$ to a parameter operator, or seen as an evolutionary operator. ${ }^{60}$ To increase understanding we can write $\hat{q}_{0}=c \cdot t \cdot \hat{1}_{0}$ or $\hat{q}_{0}=q_{0} \cdot \hat{1}_{0}$, where $\hat{1}_{0}$ is a desired unit vector direction for the counting operator $+1 .{ }^{61}$
We demand that \hat{q}_{0}, \hat{p}_{0} are canonical conjugated. From (2.71) we write
$\left[\hat{q}_{0}, \hat{p}_{0}\right]=i$.

$$
(\hbar=1)
$$

We now take note that we can just write (2.52) as the Heisenberg picture

$$
\frac{d}{d t} \hat{F}=-i[\hat{F}, \widehat{\omega}]
$$

In addition, we note the pure mathematical approach of the operator commutator
(2.76) $\left[\hat{F}, i \frac{\partial}{\partial t}\right]=-i \frac{\partial \hat{F}}{\partial t}$, since $\left[\hat{F}, i \frac{\partial}{\partial t}\right] \psi=\hat{F} i \frac{\partial}{\partial t} \psi-i \frac{\partial}{\partial t}(\hat{F} \psi)=\hat{F} i \frac{\partial}{\partial t} \psi-\hat{F} i \frac{\partial}{\partial t} \psi-i \frac{\partial \hat{F}}{\partial t}(\psi)=-i \frac{\partial \hat{F}}{\partial t} \psi$.

Inserting the definition of \hat{q}_{0} in this, we get

$$
\left[\hat{q}_{0}, i \frac{\partial}{\partial t}\right]=-i \frac{\partial \hat{q}_{0}}{\partial t}=-i \cdot c
$$

If we compare this through the definition of $\hat{p}_{0}:=i \frac{\partial}{\partial t}$ with (2.74), we get that c is negative. Do we fix ${ }^{62} \quad c=-1$, and thus $q_{0}:=-t$ by definition, we can write

$$
[=i,
$$

we can also write

$$
\left[\hat{t}, i \frac{\partial}{\partial t}\right]=i
$$

The parameter operator $\hat{t}=t \cdot \hat{1}_{0}$ can of cause only be interpreted as giving a monotone positive growing real number $t \in \overrightarrow{\mathbb{R}}$. The question here: Is \hat{t} a time-ordering operator direction FORWARD, but without a causal initiative? ${ }^{63}$
Simple from (2.73) we can write the commutator between the two canonical conjugated

$[\hat{t}, \widehat{\omega}]=i$

This relationship implies the uncertainty principle. When the energy is given as a conserved specific angular frequency ω of the oscillator, then the parameter t is undetermined. Which means that t not imply any causal relationship.
We repeat here, that the product $\omega t \in \mathbb{R}$ is simply the angle of rotation in a circle oscillator Ψ_{ω}. From here we summarise that if p_{0} is measured with the same unit as $\omega \quad(\hbar=1)$, and q_{0} is measured in the same units as $t(c=-1)$, we can write a basic a priori law of physics. ${ }^{64}$

Some might think of calling it the time operator, which can cause problems in understanding.
${ }^{11}$ Later in chapter II. 5.7 and III. 7 we call $\hat{1}_{0}=\gamma_{0}$, where we will count $\gamma_{0}^{2}=1 \Rightarrow\left|\gamma_{0}\right|=\left|\hat{1}_{0}\right|=1$.
${ }^{2}$ This can be done, when the quantity q_{0} and the parameter t are measured by the same measure.
Anyway; I claim my synthetic judgement, that the concept of time parameter t as a real scalar never can be a pseudo scalar,
$\hat{t}^{2}= \pm|\hat{t}|^{2}$, because it is born as synchronous count by causality from a 'tuck' from a clock, by linear multiplication of a
transversal plane pseudoscalar bivector \boldsymbol{i} as the generating argument in a unitary circular exponential function.
You are invited to contradict me? But first, you should read the rest of this book.
That $q_{0}=-t$ is the most fundamental measure in physics given by the canonical adjoined p_{0}. Things must wait for information from other things (finite speed c). This will be discussed later. Compare first with (1.84) in section 1.7.8.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad-56-\quad$ Research on the a priori of Physics
For quotation reference use: ISBN-13: 978-8797246931
2.2.7. Momentum - 2.2.7.1 The Canonical Quantum Operators -
(2.80) $\quad \hat{p}_{0}:=-i \frac{\partial}{\partial q_{0}} \quad$ in that, $\hat{p}_{0}:=\hbar \widehat{\omega}=i \hbar \frac{\partial}{\partial t}=i \frac{\hbar}{c} \frac{\partial}{\partial q_{0}}, \quad(c=-1, \hbar=1)$.

The relationship becomes even simpler when we use the reciprocal units:
E.g., for $p_{0}\left[s^{-1}\right] \sim[$ per second $]$ and for $q_{0}[s] \sim[$ second $]$.

We note now the fundamental law of physics; that the quantity q_{0} with the corresponding canonical conjugate quantity p_{0} is not only mutually orthogonal, but also meet $\left[\hat{q}_{0}, \hat{p}_{0}\right]=$ for the two corresponding operators \hat{q} and \hat{p} for the arbitrary local entities Ψ in physics.
The scalar product of these two resulting quantities is the phase angle $\phi=p_{0} \cdot q_{0}=-\omega t$
of the primary quality of a rotating circle oscillation (2.37) $q_{\omega}(t)=\tilde{q}_{\omega} e^{-i \omega t}$

2.2.7. Momentum

We have in this chapter concerning the concept of time versus the development parameter introduced the cyclical oscillator as the fundamental cause. The clock, as a cyclical oscillator is the foundation that determines the $F O R W A R D$ quality of the one development parameter $t \in \overrightarrow{\mathbb{R}}$, and thus the frequency ratios between all the oscillators in some local entity Ψ in physics.
We have tried to introduce abstract quantities q_{ω} and \dot{q}_{ω} of the oscillator (1.60) and (1.61) which are mutually orthogonal. We also introduced (1.76) an internal momentum quantity p_{ω} of the oscillator. With the Lagrange formalism we had generalised the quantities q and \dot{q}. Further with the Hamilton formalism we replaced \dot{q} with p, where p is the canonical conjugate momentum to the generalised quantity q.
Now we look at a generalised entity Ψ defined by $N+1$ quantities q_{j}, for $j=0,1,2, \ldots N$

2.2.7.1. The Canonical Quantum Operator

From here, when we define the quantum momentum operators \hat{p}_{j} with the canonical
conjugated quantity operators \hat{q}_{j}, where $j=0,1,2, \ldots N \in \mathbb{N}$, we must require that they comply with (2.71), so that the following general relationship applies in accordance with (2.73) and (2.80) assuming that $\hbar=1, c=-1$;

$$
\left\langle q_{j}\right| \hat{p}_{j}|\psi\rangle=\left\langle q_{j} \left\lvert\,-i \frac{\partial}{\partial q_{j}} \psi\right.\right\rangle=-i \frac{\partial}{\partial q_{j}} \psi\left(q_{j}\right),
$$

and as an integral
(2.83) $\left\langle q_{j}\right| \hat{p}_{j}|\psi\rangle \sim \int q_{j}^{*}\left(-i \frac{\partial}{\partial q_{j}} \psi\right) d q_{j}$,
with the classical association $\quad \tilde{p}_{j}(\omega)=\frac{1}{2 \pi} \int_{\mathbb{R}} d t e^{i t \cdot \omega} q_{j}(t)$.
And similar to the inverse Fourier transform (1.80) we now define
the quantity operator \hat{q}_{j} from the momentum p_{j}
$\left\langle p_{j}\right| \hat{q}_{j}|\psi\rangle=i \frac{\partial}{\partial p_{j}} \psi\left(p_{j}\right) \sim \int p_{j}^{*}\left(i \frac{\partial \psi}{\partial p_{j}}\right) d p_{j}$,
with the classical association $\quad q_{j}(t)=\int_{\mathbb{R}} d \omega e^{-i \omega \cdot t} \tilde{p}_{j}(\omega)$.

${ }^{65}$ When we talk about a spatial quantity, we can call it the position operator.

© Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-57$ - Volume I, - Edition 2-2020-22, - Revision 6,

For quotation reference use: ISBN-13: 978-8797246931

