Restricted to brief peruse for research，reviews，or scholarly analysis，© with required quotation reference：ISBN－13：978－8797246931

－2．2．3．Quantised Probability - 2．2．3．2 Heisenberg Picture－

Up till now，the treatment of these quantities for the oscillators has been abstract，and do not necessarily show directly observable magnitudes．We must look at the probability of observing， measuring，or determining a quantity

2．2．3．Quantised Probability

We will now use Dirac＇s notation〈bra｜，｜ket〉in connection with probability functions $\psi(y)$ ， that can be defined as vectors in a Hilbert space of square integrable functions．$\psi \in \mathcal{H}=L^{2}(\mathbb{R})$ We can then define a scalar product
$\left\langle\psi_{1} \mid \psi_{2}\right\rangle:=\int \psi_{1}^{*}(y) \psi_{2}(y) d y$
The integrand represents the probability distribution $p(y) d y=\psi^{*}(y) \psi(y) d y$ for $\psi(y)$
Has the entity Ψ an observable quantity in physics，we will represent it by a Hermitian ${ }^{55}$ quantisation operator \hat{F} ，and let it work on an associated probability function ψ ，as $(\hat{F} \psi)(y)$
The expectation value ${ }^{56}$ of the observable quantity of the operator \widehat{F} is

$$
\langle\hat{F}\rangle_{\psi}=\langle\psi \mid \hat{F} \psi\rangle=\langle\psi| \hat{F}|\psi\rangle=\int_{-\infty}^{\infty} \psi^{*}(y) \hat{F} \psi(y) d y, \quad \text { where } \quad|\psi\rangle \sim \psi \quad \text { and } \quad \psi^{*} \sim\langle\psi| .
$$

The parameter－dependent expectation value of \widehat{F} is written

By introducing the commutator product of the general form
$[\mathrm{b}, \mathrm{d}]=\mathrm{bd}-\mathrm{db} \quad$ or $\quad[\mathrm{q}, \mathrm{p}]=\mathrm{q} p-\mathrm{pq} \quad \rightarrow \quad[\hat{q}, \hat{p}]=\hat{q} \hat{p}-\hat{p} \hat{q}$
that is the operator－commutator，which is a relation expressed by the brackets［，］ by that，the derivative becomes

$$
(2.52) \quad \frac{d}{d t} \hat{F}(t)=-i[\widehat{F}(t), \widehat{\omega}]+e^{i \widehat{\omega} t}\left(\frac{\partial \hat{F}}{\partial t}\right) e^{-i \widehat{\omega} t}
$$

This last term is an explicit parameter derivative contracted by the form（2．49）to the Heisenberg equation picture

$$
\frac{d}{d t} \widehat{F}(t)=-i[\hat{F}(t), \widehat{\omega}]+\frac{\partial \hat{F}(t)}{\partial t} \quad \Rightarrow \quad i \frac{d}{d t} \widehat{F}=[\hat{F}, \widehat{\omega}], \quad \text { maintain } \frac{\partial \hat{F}}{\partial t}=0
$$

Comparing with the classical Hamilton formulation（2．26）with the Poisson bracket，we have
$\frac{d}{d t} f=\{f, H\}+\left(\frac{\partial f}{\partial t}\right)$
we see an equivalence between the classical Poisson brackets and the operator－commutator

[^0]The overall knowledge of quantum physics tells us this continuity is impossible．The finite quantum energy $\hbar \omega$ for each oscillator will cause an infinite energy density．The ancient atomic idea demanded that all entities in a physical universe will be countable． This tell us to judge，that the density of oscillators must be finite．Remember this for physics，but in the pure mathematical Fourier The

號
© Jens Erfurt Andresen，M．Sc．Physics，Denmark $\quad-52-\quad$ Research on the a priori of Physics
For quotation reference use：ISBN－13：978－8797246931

For quotation reference use：ISBN－13：978－8797246931

[^0]: ${ }^{5}$ For a Hermitian operator applies $\hat{F}=\hat{F}^{\mathrm{H}}$ ；for complex functions $f^{*}(y)=f(-y)$ ；and matrices conjugate transposed $\hat{F}=\hat{F}^{*}$ or the mean measure of the quantity for a large ensemble of cases．
 © Jens Erfurt Andresen，M．Sc．NBI－UCPH，$\quad-53-\quad$ Volume I，－Edition 2－2020－22，－Revision $6, \quad$ December 2022

