(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.

I . The Time in the Natural Space – 2. The Parameter Dependent Mechanics – 2.2. The Hamilton Function –
12. The Operator Quantised Circle Oscillator
We introduced in section 1.7.5 (1.60) a *quantity* for the circle oscillator
(2.3)
$$q_{\omega} = q_{\omega}(0) = \tilde{q}_{\omega} u_{\omega} = \tilde{q}_{\omega} e^{-i\omega t}$$

and its information development parameter derivative as a development change *quantity* (1.61)
(2.3) $q_{\omega} = \frac{1}{\delta t} q_{\omega}(0) = -i\omega \tilde{q}_{\omega} e^{-i\omega t} = -i\omega \cdot q_{\omega}$.
From this I introduced (1.69) the imaginary differential operator \tilde{u} and write
(2.40) $\tilde{u}_{\alpha}(\psi) = \tilde{u}_{\alpha}^{\dagger}(\psi)$. Some would prefer to write this $\frac{1}{\delta t} \hat{H}(\psi) = [\frac{d}{\delta t}(\psi)$.
We recall, that ψ is an arbitrary abstract complex test function for the operator.
Making an alternative rewriting of the unitary operator concept: Where we in section 1.7.5
introduced $u_{\omega} = e^{-i\omega t}$ transformed into an operator $e^{-i\omega t}(t) = u_{\omega}(t')$
 $I = e^{-i\omega t} - e^{-i\omega t}(t) = u_{\omega}(t')$ or just $u_{\omega} \sim u_{\omega}$
 $-A finary wey pornous understanding of the unity operator sugary group elements $u_{\omega}(t')$.
I rewrite the operator \tilde{u} to $\tilde{u}^{\dagger} = \tilde{t}^{\dagger} = e^{\delta t}(t)$.
Here is an interpretation problem hidden in the chain $|e^{-i\omega t}| = 1$ and thus $|e^{\frac{\pi}{\delta t}}| = e^{\delta} + |e^{it}|$:
 $I = neounge the reaker to try a geometrical interpretation 2W will try to consider this here.
 $-A yaveya, no consist on unity expertators $u_{\omega}(t) = -\tilde{u}_{\omega}(t')$.
Here is an interpretation problem hidden in the chain $|e^{-i\omega t}| = 1$ and thus $|e^{\frac{\pi}{\delta t}}| = e^{\delta} = |e^{it}|$.
 $This of course also applies to unitary operators $u_{\omega}(t) = -\tilde{u}_{\omega}(t')$.
We remember that $u_{\omega}(t) = e^{-i\omega t} \in C$ is a complex number, which apply $u_{\omega}u_{\omega}^{\dagger} = 1$.
This to course also applies to unitary operators $u_{\omega}(t) = -\tilde{u}_{\omega}(t') = 0$ for any entity e^{-1} .
We now see that the rotation $\phi \neq e^{i\theta}$ of $U(1)$ is given by the one parameter $\phi = \omega t \sim \delta t'$.
Now the claim is that the quantify ω intrough an operator \tilde{u} gives the rotary osci$$$$

- 52 -

For quotation reference use: ISBN-13: 978-8797246931

Research on the a priori of Physics

December 2022

Copyrighted material from hardback: ISBN-13: 978-8797246931, paperback: ISBN-13: 978-8797246948, Kindle and PDF-file: ISBN-13: 978-8797246917

© Jens Erfurt Andresen, M.Sc. Physics,

Denmark

measuring, or determining a *quantity*. 2.2.3. Quantised Probability We will now use Dirac's notation $\langle bra |, | ket \rangle$ in connection with probability functions $\psi(y)$, that can be defined as vectors in a Hilbert space of square integrable functions. $\psi \in \mathcal{H} = L^2(\mathbb{R})$. We can then define a scalar product $\langle \psi_1 | \psi_2 \rangle \coloneqq \int \psi_1^*(y) \psi_2(y) dy$ The integrand represents the probability distribution $p(y)dy = \psi^*(y)\psi(y)dy$ for $\psi(y)$. Has the *entity* Ψ an observable *quantity* in physics, we will represent it by a Hermitian⁵⁵ quantisation operator \hat{F} , and let it work on an associated probability function ψ , as $(\hat{F}\psi)(y)$. The expectation value⁵⁶ of the observable *quantity* of the operator \hat{F} is $\langle \hat{F} \rangle_{\psi} = \langle \psi | \hat{F} \psi \rangle = \langle \psi | \hat{F} | \psi \rangle = \int_{-\infty}^{\infty} \psi^*(y) \, \hat{F} \psi(y) dy,$ where $|\psi\rangle \sim \psi$ and The parameter-dependent expectation value of \hat{F} is written $\langle \hat{F} \rangle_t = \langle \psi(t) | \hat{F} | \psi(t) \rangle,$ wherein the development one parameter dependent probability function from $|\psi\rangle$ is given by $|\psi(t)\rangle = e^{-i\hat{\omega}t}|\psi(0)\rangle = e^{-i\hat{\omega}t}|\psi\rangle$ The expectation value (2.46) of \hat{F} can now be written as $\langle \hat{F} \rangle_t = \langle \psi | e^{i \hat{\omega} t} \hat{F} e^{-i \hat{\omega} t} | \psi \rangle$ 2.2.3.2. Heisenberg Picture The parameter dependent operator becomes $\hat{F}(t) = e^{i\hat{\omega}t}\hat{F}e^{-i\hat{\omega}t}$ We write the total parameter derivative of $\hat{F}(t)$ as $\frac{d}{dt}\widehat{F}(t) = \frac{d}{dt} \left(e^{i\widehat{\omega}t}\widehat{F} e^{-i\widehat{\omega}t} \right) = i\widehat{\omega}e^{i\widehat{\omega}t}\widehat{F}e^{-i\widehat{\omega}t} + e$ $= ie^{i\hat{\omega}t} (\hat{\omega}\hat{F} - \hat{F}\hat{\omega})e^{-i\hat{\omega}t} + e^{i\hat{\omega}t} (\frac{\partial\hat{F}}{\partial t})e^{-i\hat{\omega}t} =$ By introducing the commutator product of the genera [b,d] = bd - db or [q,p] = qp - p

that is the operator-commutator, which is a relation e by that, the derivative becomes

(2.52)
$$\frac{d}{dt}\hat{F}(t) = -i[\hat{F}(t),\hat{\omega}] + e^{i\hat{\omega}t}\left(\frac{\partial\hat{F}}{\partial t}\right)e^{-i\hat{\omega}t}.$$

- 2.2.3. Quantised Probability - 2.2.3.2 Heisenberg Picture -

This last term is an explicit parameter derivative contracted by the form (2.49) to the Heisenberg equation picture

53)
$$\frac{d}{dt}\hat{F}(t) = -i[\hat{F}(t),\hat{\omega}] + \frac{\partial\hat{F}(t)}{\partial t} \implies i$$

Comparing with the classical Hamilton formulation (2.26) with the Poisson bracket, we have

(2.54)
$$\frac{d}{dt}f = \{f, H\} + \left(\frac{\partial f}{\partial t}\right)$$

we see an equivalence between the classical Poisson brackets and the operator-commutator

⁵⁵ For a Hermitian operator applies $\hat{F} = \hat{F}^{\text{H}}$; for complex functions $f^*(y) = f^{56}$ or the mean measure of the <i>quantity</i> for a large ensemble of cases.

© Jens Erfurt Andresen, M.Sc. NBI-UCPH,

53

For quotation reference use: ISBN-13: 978-879724693

Up till now, the treatment of these *quantities* for the oscillators has been abstract, and do not necessarily show directly observable magnitudes. We must look at the probability of observing,

$$i\hat{\omega}t\left(\frac{\partial\hat{F}}{\partial t}\right)e^{-i\hat{\omega}t} + e^{i\hat{\omega}t}\hat{F}\cdot(-i\hat{\omega})e^{-i\hat{\omega}t}$$

$$i\left(\hat{\omega}\hat{F}(t) - \hat{F}(t)\hat{\omega}\right) + e^{i\hat{\omega}t}\left(\frac{\partial\hat{F}}{\partial t}\right)e^{-i\hat{\omega}t}.$$
al form
$$\mathbf{q} \rightarrow [\hat{q},\hat{p}] = \hat{q}\hat{p} - \hat{p}\hat{q}$$
expressed by the brackets [,]

 $i\frac{d}{dt}\hat{F} = [\hat{F},\hat{\omega}], \text{ maintain } \frac{\partial\hat{F}}{\partial t} = 0.$

f(-y); and matrices conjugate transposed $\hat{F} = \hat{F}^*$