Restricted to brief peruse for research，reviews，or scholarly analysis，© with required quotation reference：ISBN－13：978－8797246931

2．2．The Hamilton Function

The second order Euler－Lagrange equation（2．7）can be directly used when we include spatia aspects．Here we will go over to the Hamilton formalism，where，instead of the parameter derivative \dot{q}_{i} of the generalised quantities q_{i} ，we introduce the connected momentum quantities p_{i} ，
$p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}$.

2．1．2．Generalised Canonical Quantities

q_{i}, p_{i} is now called the canonical quantities，and p_{i} is called the conjugate quantities to q_{i} ．
As with the quantity $q=\left\{q_{0}, \ldots, q_{N}\right\}$ we use $p=\left\{p_{0}, \ldots, p_{N}\right\}$ the combined quantities q and
p for the sum entity Ψ_{Σ} ，which consists of $N+1$ sub entities，for $i=0,1, \ldots, N$ ，
and where we imply all linear relationships，e．g．，$H(q, p)=\sum_{i} H\left(q_{i}, p_{i}\right)$ ．（remark no parameter t ）
Traditionally the generalised set of (q, p) is called a point in a so called phase－space．（not natural space）
By inserting（2．13）in（2．7）we can note the classical concept of＇the forces ${ }^{50}$
（2．14）$\quad \dot{p}_{i}=\frac{\partial L}{\partial q_{i}}$
Using a Legandre transformation ${ }^{51}$ we can switch the function dependency of the two independent variable argument quantities，$(q, \dot{q}) \leftrightarrow(q, p)$ ．In that，we use the total differential of L from（2．3），and insert the definition（2．13）and（2．14），we get
（2．15）$\quad d L=\frac{\partial L}{\partial q_{i}} d q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}+\left(\frac{\partial L}{\partial t} d t\right)=\dot{p}_{i} d q_{i}+p_{i} d \dot{q}_{i}+\left(\frac{\partial L}{\partial t} d t\right.$

$$
=\quad \dot{p}_{i} d p_{i}+d\left(p_{i} \dot{q}_{i}\right)-\dot{q}_{i} d p_{i}+\left(\frac{\partial L}{\partial t} d t\right.
$$

By moving $d\left(p_{i} \dot{q}_{i}\right)$ from the right to the left side and change the sign，we get
（2．16）$\quad d\left(p_{i} \dot{q}_{i}-L\right)=-\dot{p}_{i} d q_{i}+\dot{q}_{i} d p_{i}-\left(\frac{\partial L}{\partial t} d t\right.$
Comparing the argument in the differential with the energy function（2．11），
and using（2．13），we now form the Hamilton function．
（2．17）$\quad H(q, p, t)=p \cdot \dot{q}-L(q, \dot{q}, t)$ ．
This function formula changes the dependence of arguments between the quantities：

$$
(q, p) \leftrightarrow(q, \dot{q})
$$

We look at the differentials of the Hamilton function $H(q, p, \mathrm{t})$ ，and then compares with（2．16）
（2．19）$d H=\frac{\partial H}{\partial q_{i}} d q_{i}+\frac{\partial H}{\partial p_{i}} d p_{i}+\left(\frac{\partial H}{\partial t} d t\right)$ ，
（2．20）$\quad d H=-\dot{p}_{i} d q_{i}+\dot{q}_{i} d p_{i}-\left(\frac{\partial L}{\partial t} d t\right)$
Instead of the Euler－Lagrange equation（2．7）we form Hamilton＇s canonical equations

$$
\begin{aligned}
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}} & \sim & \frac{d q_{i}}{d t}
\end{aligned}=\frac{\partial H}{\partial p_{i}} .
$$

These canonical equations are the stationary condition for the physical entity Ψ to be stable with the quantities q, p and $H(q, p)$

We have the explicit parameter derivative $\quad \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} \quad(=0)$
The $(=0)$ is preferred in the model for the entity Ψ to make it external conservative
${ }^{50}$ This quantity expresses the quality that Newton and classical physics interpret as the concept of force．
${ }^{11}$ The Legendre transformation $p d x=d(p x)-x d p$ is connected to integration by parts $\int p d x=p x-\int x d p$
© Jens Erfurt Andresen，M．Sc．Physics，Denmark $\quad-50-\quad$ Research on the a priori of Physics December 2022
$\frac{\partial p_{j}}{\partial q_{i}}=0 \quad$ and $\quad \frac{\partial q_{j}}{\partial p_{i}}=0 \quad$ for all $\quad \forall i, \forall j \in\{0,1,2, \ldots N\} \subset \mathbb{N}$
Then the fundamental relationships we rewrite by Poisson brackets for canonical q, p
$\{q, q\}=0$
$\Leftarrow \frac{\partial q_{j}}{\partial q_{i}} \frac{\partial q_{j}}{\partial p_{i}}-\frac{\partial q_{j}}{\partial p_{i}} \frac{\partial q_{j}}{\partial q_{i}}=1 \cdot 0-0 \cdot 1=0$
$\{p, p\}=0$
$\Leftarrow \frac{\partial p_{j}}{\partial q_{i}} \frac{\partial p_{j}}{\partial p_{i}}-\frac{\partial p_{j}}{\partial p_{i}} \frac{\partial p_{j}}{\partial q_{i}}=0 \cdot 1-1 \cdot 0=0$
（remember $\sum_{i j}$ ）
$\{q, p\}=\sum \delta_{i j} \rightarrow N$
$\Leftarrow \frac{\partial q_{j}}{\partial q_{i}} \frac{\partial p_{j}}{\partial p_{i}}-\frac{\partial q_{j}}{\partial p_{i}} \frac{\partial p_{j}}{\partial q_{i}}=(1 \cdot 1-0 \cdot 0=1)_{i=j} \rightarrow N=\sum_{i=j} \delta_{i j}$
Hamilton＇s canonical equations（2．21）and（2．22）are then written as
$\{q, H\}=\dot{q}$
$=\frac{\partial H}{\partial p}=\sum_{i} \frac{\partial H}{\partial p_{i}}$
（2．36）
$\{p, H\}=\dot{p}$
$=-\frac{\partial H}{\partial q}=-\sum_{i} \frac{\partial H}{\partial q_{i}}$
The advantage with this formulation is that we do not need an explicit external parameter t ． We will not in this book go further in to Liouville＇s Theorem etc．the literature is rich in this
${ }^{52}$ In practice we are limited to $\forall t \in\left[t_{\mathrm{A}}, t_{\mathrm{B}}\right]$ from the beginning A to the end B of the entity Ψ
© Jens Erfurt Andresen，M．Sc．NBI－UCPH，$\quad-51-\quad$ Volume I，－Edition 2－2020－22，－Revision 6 ，

