

2. The Parameter Dependent Mechanics

2.1. The Lagrange Formalism

2.1.1. The Lagrange Function

We will now look on a function representing the ability for change. I will call this quality "the portable energy ${ }^{\text {"48 }}$ for a physical entity Ψ and introduce the Lagrange function

$L(q, \dot{q})$

based on the quantity q and the one parameter derivative quantity \dot{q}, as introduced in § 1.7.1.1 above. We have defined the three quantities (1.43)

$$
q_{i}(t), \dot{q}_{i}(t) \text { and } L\left(q_{i}(t), \dot{q}_{i}(t), t\right) \text { as functions of the parameter } t \in \overrightarrow{\mathbb{R}} .
$$

It is here decisive to specify, that the parameter t does not control the entity Ψ, but is only used to synchronise the measurements of all the oscillators, and there is no causality between the different oscillators, as indicated in the previous chapter.
With help of the Dirac delta function (1.83) section 1.7.7, we confirm that the parameter does t do not transfer causal dependence from $q(t)$ to $q\left(t^{\prime}\right)$ for $t^{\prime} \neq t$, nor to the quantity $\dot{q}(t)$, and thence not to $L\left(q_{i}(t), \dot{q}_{i}(t), t\right)$. The Lagrange function $L(q, \dot{q})$ is only explicitly dependent on these two quantities, the changing quantity q, and the of this independent change quantity \dot{q}. As we saw for the oscillators (in section 1.7.5) the higher order derivative of these $\ddot{q}_{\omega}, \quad \dddot{q}_{\omega}, \ldots$ just are real factorised repetitions of these same two quantities q_{ω} and \dot{q}_{ω}.
These two q_{ω} and \dot{q}_{ω} are mutually orthogonal in an circle oscillator since they are separated by the complex factor $i \omega$, see (1.61). The Dirac delta function (1.88) also shows that
q_{ω} and $q_{\omega^{\prime}}$ are orthogonal for $\omega^{\prime} \neq \omega$, and therefore independent of each other.
In the following, we can count on entities Ψ_{Σ}, that consist of $N+1$ subdivided entities
Ψ_{i} for $i=0,1, \ldots, N$, so that the quantities $q=\left\{q_{0}, \ldots, q_{N}\right\}$ and $\dot{q}=\left\{\dot{q}_{0}, \ldots, \dot{q}_{N}\right\}$ is valid for Ψ_{Σ} in all linear relationships. With the quantities q and \dot{q}, we subsequent implicit understand possibilities of indices, e.g. $L(q, \dot{q})=\sum_{i} L\left(q_{i}, \dot{q}_{i}\right)$.
We now look at the derivative of the Lagrange function $L(q, \dot{q}, t)=\sum_{i} L\left(q_{i}, \dot{q}_{i}, t\right)$,

$$
\begin{equation*}
d L=\frac{\partial L}{\partial q_{i}} d q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}+\frac{\partial L}{\partial t} d t=\sum_{i} \frac{\partial L}{\partial q_{i}} d q_{i}+\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}+\frac{\partial L}{\partial t} d t \tag{2.3}
\end{equation*}
$$

Here we must take note of two notations.

- The one is the hard d in $d x$ for the total differential of the variable x,
while $\partial / \partial y$ is used as the partial derivative per the explicit variable y
- The second is the summation implied over double indices (i) occurring in each part of the addition. In the first part of equation (2.3) the implied \sum_{i} is omitted but shown in the last part. ${ }^{49}$
The quantities q_{i} are often called generalised coordinates. (Regarding space coordinates.) Here I just will call q_{i} for the generalised quantities, for a physical entity Ψ. Referring to the definitions of q_{i}, \dot{q}_{i} as dependent on the internal parameter t, as their arguments, we can also write $q_{i}(t), \dot{q}_{i}(t)$, and hence the parameter dependent Lagrange function as: $\quad L\left(q_{i}(t), \dot{q}_{i}(t), \mathrm{t}\right)=L\left(q_{i}, \dot{q}_{i}, \mathrm{t}\right)$
Seen from the external we will process t, q_{i} and \dot{q}_{i} as three linearly independent inputs for the Lagrange function $L\left(q_{i}, \dot{q}_{i}, \mathrm{t}\right)$ representing the ability of change for the entity Ψ.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad-48-\quad$ Research on the a priori of Physics December 2022
For quotation reference use: ISBN-13: 978-8797246931
2.1.2. Action

We will now look at what happens from one parameter point t_{A} to one other t_{B}.
To determine the parameter points, we need to identify two events:
The first event A , then the second event B .
We determine by measurement $q_{\mathrm{A}}=q\left(t_{\mathrm{A}}\right)$ and $q_{\mathrm{B}}=q\left(t_{\mathrm{B}}\right)$. How much will happen from A to B ? We collect the portable energy $L(q, \dot{q}, \mathrm{t})$ from A to B and get all the action by the integral.
(2.4) $S=\int_{t_{A}}^{t_{B}} L(q, \dot{q}, t) d t$

The goal is to make this quantity stable and preferable minimised.
We do not necessarily know what $q(t)$ is, for $t_{\mathrm{A}}<t<t_{\mathrm{B}}$, where $t \in \overrightarrow{\mathbb{R}}$
We think $q(t)$ as an arbitrary unknown function and add a minor variation $\delta q(t)$ to this.
Our guess function is the varying quantity $q(t)+\delta q(t)$, where we shall maintain the endpoints A and B , so that the variations are fixed there $\delta q\left(t_{\mathrm{A}}\right)=\delta q\left(t_{\mathrm{B}}\right)=0$. Then we look at the difference between these functions between A and B in the first order of δq.
The variation δS of S, when we go from $q(t)$ to $q(t)+\delta q(t)$ for $\forall t \in] t_{\mathrm{A}}, t_{\mathrm{B}}$ [, will be
$\delta S=\int_{t_{A}}^{t_{B}} L(q+\delta q, \dot{q}+\delta \dot{q}, t) d t-\int_{t_{A}}^{t_{B}} L(q, \dot{q}, t) d t=\int_{t_{A}}^{t_{B}}\left(\delta q_{i} \frac{\partial L}{\partial q_{i}}+\delta \dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}\right) d t \rightarrow 0$.
We want $\delta S=0$, as the action S herby may achieve a stable value, a desired minimum.
As $\delta \dot{q}=\frac{d \delta q}{d t}$ we get by shared integration of the last part second term in the bracket
$\delta S=\left[\delta q_{i} \cdot \frac{\partial L}{\partial \dot{q}_{i}}\right]_{t_{A}}^{t_{B}}+\int_{t_{A}}^{t_{B}} \delta q_{i}\left(\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}\right) d t=0$
The integrated first part disappears, because $\delta q\left(t_{\mathrm{A}}\right)=\delta q\left(t_{\mathrm{B}}\right)=0$.
What remains is the Euler-Lagrange equation

$$
\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}=0 \quad \text { or } \quad \frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}=\frac{\partial L}{\partial q_{i}}
$$

This equation is the condition that S is stable in an extremum (or minimum) $\delta S=0$.
2.1.3. The Conservative Energy

We look at the total parameter derivative of the Lagrange function for the entity Ψ
(2.8) $\frac{d L}{d t}=\frac{\partial L}{\partial q_{i}} \frac{\partial q_{i}}{\partial t}+\frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial t}+\frac{\partial L}{\partial t}$.

The first term in this addition is rewritten by definition $\dot{q}_{i}=\frac{\partial q_{i}}{\partial t}$ and using (2.7)
(2.9) $\frac{d L}{d t}=\frac{\partial L}{\partial q_{i}} \dot{q}_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial t}+\frac{\partial L}{\partial t}=\dot{q}_{i} \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)+\frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}}{\partial t}+\frac{\partial L}{\partial t}=\frac{d}{d t}\left(\dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}\right)+\frac{\partial L}{\partial t}$, and move the left to the opposite side of the equation
(2.10) $\frac{d}{d t}\left(\dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}-L\right)+\frac{\partial L}{\partial t}=0$

The term in the brackets is often called the energy function
(2.11) $\quad h(q, \dot{q}):=\dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}-L$

Equation (2.10) may be considered as the total parameter derivative of h;

$$
\frac{d h}{d t}=-\frac{\partial L}{\partial t}
$$

The case the Lagrange function is not explicitly dependent on the parameter t, but only implicitly dependent through q and \dot{q}, as $L(q, \dot{q})=\sum_{i} L\left(q_{i}, \dot{q}_{i}\right)$, gives $\frac{\partial L}{\partial t}=0$ This express, that (2.12) the energy function $h(q, \dot{q})$ is a preserved constant $\frac{d h}{d t}=0$ In the next section, we will instead of $h(q, \dot{q})$ introduce the Hamilton function $H(q, p)$.

For quotation reference use: ISBN-13: 978-8797246931

