Research

on

th

0

ρ

priori

of

Phys10

S

ens

Andr

Ô S

22

(1.81)

Geometric Critique

of Pure

Mathematical Reasoning

Edition

- I. The Time in the Natural Space - 1. The Idea of Time - 1.7. The Cyclic Rotation -

I.e., maintaining constant *quantities* \tilde{q}_{ω} and $\dot{\tilde{q}}_{\omega}$ the for the *primary quality* U(1). The equation (1.79) $F = \dot{p}_{\omega} = -m_{\omega}\omega^2 q_{\omega}$ is Newton's second law, which expresses the force as an inner *quantity* of the oscillator *entity* Ψ_{ω} , and makes the circular path possible.⁴¹ This internal force depends on the square of ω and the internal inertia quantity m_{ω} .⁴² If we try setting the internal inertia $m_{\omega} = 0$ the impact of the internal momentum and the internal force will disappear from the oscillator, – the oscillator would stop $\omega = 0$, – void. Since Descartes and Newton, these *quantities* have been essential for any changes in physics, therefore, we must always assume that $m_{\omega} \neq 0$ for any physical entity. – Claim this is important to any internal existence of any *entity* of matter (das Ding an sich). When we in 20th-century quantum physics say that a photon has no rest mass $m_{\text{photon}} = 0$, we alluded to the external mass, or say, that the photon doesn't carry portable energy.⁴³

When I later below treat the quantum harmonic oscillator, the autonomous reference dimensioning of *quantities* will be fixed with the factor $\omega m_{\omega} = 1$. In this way, we achieve to reduce the impedance factor to the pure imaginary unit -i. Then back in (1.77) $z(\omega) = -i$. Still, later below, I also describe the pure quantum circular oscillator whose angular frequency is auto-normed to 1, i.e., $\omega = 1$, with the result, that $m_{\omega} = 1$ as a purely quantum mechanical view.⁴⁴

This was my abstract introduction to the *primary quality*, which is called a circle oscillator. This unit circle then oscillates with an externally given *quantity*, the angular frequency ω .

⁴¹ In a cyclic process the Kepler elliptical orbit is possible of massive point particles and central forces, Therefor	, but here in this sul we prefer circular s	ostantial ideology we try to prevent the c ymmetry as a founding idea $U(1)$.	assical ideas			
⁴² A classic example from space is this; the Moon orbit 'c A more day-to-day example is the earth rotation on its The internal inertia factor $m_{2\pi day}$ of the rotating Earth,	Fircle' around the Ea elf. A one-day clock does not affect the	rth. The Moon is a clock for us. t is relative to the sun or the stars. external rest mass m_{Erth} of the Earth es	sential.			
The impact on the rotating Earth may be discussed in another context. ⁴³ The external spatial momentum of photons we will treat later in this book. ⁴⁴ This last m_{ω} =1 has been a guess by many authors but often without any explanation except it is simple and beautiful.						
© Jens Erfurt Andresen, M.Sc. Physics, Denmark	- 44	Research on the a priori of Physics $-$	December 2022			
For quotation reference us	e: ISBN-13	978-8797246931				

- 1.7.7. Fourier Transformation - 1.7.5.3 The Internal Oscillation

1.7.7. Fourier Transformation

An *entity* Ψ in physics may contain oscillator *entities* Ψ_{ω} with real angle frequencies ω . For each $\omega \in \mathbb{R}$, there can be $n_{\omega} \in \mathbb{N}$ oscillators, $n_{\omega} \Psi_{\omega}$. The collection of all oscillators Ψ_{ω} over $\forall \omega \in \mathbb{R}$ is called a *spectrum*.⁴⁵ (frequency spectrum) In the following, we assume that a spectrum *entity* Ψ in physics may contain myriads of oscillator *entities* Ψ_{ω} for each $\omega \in \mathbb{R}$. Based on the concept of cyclical time we have in section 1.7.5 above defined an oscillator running swing-spin developing *quantity* q_{ω} that in the calculation reality develops by one continuous parameter $t \in \mathbb{R}$ as an argument $q_{\omega}^{*}(t) = \tilde{q}_{\omega}^{*} u_{\omega}^{*} = \tilde{q}_{\omega}^{*} e^{i\omega t} \in \mathbb{C}$. Each circular oscillator frequency ω is by definition its own generator for its internal information development parameter t. In fact, we can write $q(\omega, t) = q_{\omega}(t)$, so that is dependent on the given external *quantity* $\omega \in \mathbb{R}$ and internal parameter $t \in \mathbb{R}$. For the external view on the spectrum *entity* Ψ we shall define an external local development parameter t' connected to a chosen circular oscillator defined as a standard oscillator *clock* with an angular frequency ω_c that produces its own internal development parameter t_c that shall be promoted to the local external information development parameter $t' \coloneqq t_c$. The standard clock shall be in the same locality as the spectrum *entity* Ψ . (Due to relativity paradox)

First, we ignore the parameter-dependent internal oscillation $e^{-i\omega t}$ in (1.60) and concentrate on the factor $\tilde{q}_{\omega} \in \mathbb{C}$, which is explicitly independent of the oscillator internal parameter t, $\frac{\partial}{\partial t} \tilde{q}_{\omega} = 0$. We look at all the oscillators $n_{\omega}\Psi_{\omega}$ at the frequency ω of the ensemble *entity* Ψ and establish the *quantity* $\tilde{q}(\omega) = n_{\omega} \tilde{q}_{\omega}^*$, for $n_{\omega} \in \mathbb{N}$ of each $\omega \in \mathbb{R}$. $\tilde{q}(\omega) \in \mathbb{C}$ is the weighted scalar for each ω , which indicates the contribution of the unit oscillators $u_{\omega}^* = e^{i\omega t}$ representing each Ψ_{ω} of the full spectrum *entity* Ψ , for all angular frequencies $\forall \omega \in \mathbb{R}$.

For the ensemble *entity* Ψ , we now look at a total *quantity* q(t'), which is dependent on one local macroscopic external information development parameter $t' \in \mathbb{R}$, produced from the local standard oscillator clock (ω_c), for the total ensemble. Employing the famous Fourier integrals, which we may express as a weighted integral of oscillators $e^{i\omega t'}$, for $\omega \in \mathbb{R}$ and for one local selected external information parameter $t' \in \mathbb{R}$:

(1.80)
$$q(t') = \mathfrak{F}^{-1}\{t', \tilde{q}(\omega)\} = \int_{-\infty}^{\infty} \tilde{q}(\omega) e^{i\omega t'} d\omega = \int_{-\infty}^{\infty} \tilde{q}(\omega) e^{i\omega t'} d\omega$$

where $\mathfrak{F}^{-1} \sim \int_{\mathbb{D}} d\omega e^{i\omega}$ is the inverse Fourier operator.⁴⁶ Here the weight scalar $\tilde{q}(\omega)$ we will express as the integral over the entire internal parameter span $t \in \mathbb{R}$ of the inverted unitary oscillators $u_{\omega} = e^{-i\omega t}$ weighted by the macroscopic *quantity* q(t), here augmented by the internal parameter $t \in \mathbb{R}$:

$$\tilde{q}(\omega) = \mathfrak{F}\{\omega, q(t)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} q(t) e^{-i\omega t} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} q(t) dt$$

where $\mathfrak{F} \sim \frac{1}{2\pi} \int_{\mathbb{R}} dt e^{-it}$ is the Fourier operator.

The quantity $\tilde{q}(\omega)$ is called a spectrum of the external quantity q(t') and therefore the **spectrum** for the **entity** Ψ .

We combine these two integrals combination $\mathfrak{F}^{-1}(\mathfrak{F})$, and get

⁵ Here it is debatable whether the spectrum is continuous or discrete as the number of physical entities deemed to be countable in ar intuition universe where not all frequencies $\omega \in \mathbb{R}$ are populated, hence $n_{\omega} = 0$ are allowed. ⁴⁶ Blue notation is used here for the concept of an operator, while magenta is used for any arbitrary operand.

)	Jens	Erfurt	Andresen,	M.Sc.	NBI-UCPH

-45

- (the myriads are due to a statistical ensemble view.)
 - (1.60)

 $\int_{\mathbb{R}} \tilde{q}(\omega) e^{i\omega t'} d\omega = \int_{\mathbb{R}} d\omega \ e^{i\omega \cdot t'} \ \tilde{q}(\omega)$

 $\frac{1}{2\pi} \int_{\vec{\mathbb{R}}} q(t) e^{-i\omega t} dt = \frac{1}{2\pi} \int_{\vec{\mathbb{R}}} dt \ e^{-it \cdot \omega} q(t)$