Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

We see that the operator $i \frac{\partial}{\partial t}$ is the general orthogonal relationship between the complex quantities in the circle oscillator and thus just as $U(1)$ a primary quality for this
By squaring or using the operator twice, we get the second derived by the one parameter
(1.70) $\quad \frac{\partial^{2}}{\partial^{2} t}\left(\varphi_{\omega}\right)=i \frac{\partial}{\partial t}\left(i \frac{\partial}{\partial t}\right)\left(\varphi_{\omega}\right)=-\omega^{2}\left(\varphi_{\omega}\right), \quad$ or $\quad-\frac{\partial^{2}}{\partial^{2} t}\left(\varphi_{\omega}\right)=i \frac{\partial}{\partial t}\left(i \frac{\partial}{\partial t}\right)^{*}\left(\varphi_{\omega}\right)=\omega^{2}\left(\varphi_{\omega}\right)$.

Opposite the quantum mechanical differential operator in (1.69), the classical differential operator $\frac{\partial}{\partial t}$ in (1.61), and (1.65) correspond to the factor $\pm i \omega \cdot$ as an imaginary multiplication operator on the classical quantities of the circular oscillation. ${ }^{38}$
(The issue of the plane concept lay in the imaginary unit i as its concept).

1.7.5.2. The Real Rotation

As we have both retrograde q_{ω} and progressive q_{ω}^{*} rotation, we can combine these two to a real numbered oscillation quantity φ_{ω} in a way we call a superposition of the rotations in the complex plane
(1.71) $\varphi_{\omega}=\frac{1}{2}\left(q_{\omega}+q_{\omega}^{*}\right)=\frac{1}{2}\left(\tilde{q}_{\omega} e^{-i \omega t}+\tilde{q}_{\omega}^{*} e^{i \omega t}\right)=\varphi_{\omega}^{*}$
(1.72) $\quad \dot{\varphi}_{\omega}=\frac{1}{2}\left(\dot{q}_{\omega}+\dot{q}_{\omega}^{*}\right)=\frac{i \omega}{2}\left(-\tilde{q}_{\omega} e^{-i \omega t}+\tilde{q}_{\omega}^{*} e^{i \omega t}\right)=\dot{\varphi}_{\omega}^{*}$
(1.73) $\quad \ddot{\varphi}_{\omega}=\frac{1}{2}\left(\ddot{q}_{\omega}+\ddot{q}_{\omega}^{*}\right)=-\frac{\omega^{2}}{2}\left(\tilde{q}_{\omega} e^{i \omega t}+\tilde{q}_{\omega}^{*} e^{-i \omega t}\right)=\ddot{\varphi}_{\omega}^{*}=-\omega^{2} \varphi_{\omega}$

This superposition gives $\varphi^{*}=\varphi, \quad \dot{\varphi}^{*}=\dot{\varphi}, \quad \ddot{\varphi}^{*}=\ddot{\varphi}$, as real quantities $\varphi, \dot{\varphi} \in \mathbb{R}$.
Since we work in the plane for the $U(1)$ idea: $\phi=\omega t \rightarrow e^{ \pm i \omega t}$, we must identify the real basis axis $\left(e^{i 0}=1\right)$ for the one parameter value defined by $\phi_{0}=0$ for the start phase angle of $\phi=\omega t \in \mathbb{R}$ This axis represents the phase coherent start creation direction for q_{ω} and q_{ω}^{*} at $t=0 \in \overrightarrow{\mathbb{R}}$ At that real number basis axis in the rotation plane, we can combine both the constant complex amplitude numbers \tilde{q}_{ω} and \tilde{q}_{ω}^{*} to a real amplitude $\tilde{\varphi}_{\omega}=\frac{1}{2}\left(\tilde{q}_{\omega} e^{-i 0}+\tilde{q}_{\omega}^{*} e^{i 0}\right)=\frac{1}{2}\left(\tilde{q}_{\omega}+\tilde{q}_{\omega}^{*}\right)$, note that $\tilde{\varphi}_{\omega}^{*}=\tilde{\varphi}_{\omega} \in \mathbb{R}$, and we shall have $\tilde{\varphi}_{\omega}^{2}=\tilde{q}_{\omega} \tilde{q}_{\omega}^{*}$
We can construct real quantities from (1.60) and (1.61) by the use of this real amplitude $\tilde{\varphi}_{\omega} \in \mathbb{R}$ and the superposition (1.71) and (1.72) so we can write the real oscillation as

$$
\text { (1.74) } \quad \varphi_{\omega}=\tilde{\varphi}_{\omega} \cos (\omega t), \quad \dot{\varphi}_{\omega}=-\omega \cdot \tilde{\varphi}_{\omega} \sin (\omega t) \quad \text { and } \quad \ddot{\varphi}_{\omega}=-\omega^{2} \tilde{\varphi}_{\omega} \cos (\omega t)
$$

We shall remember the old implicit idea, that represents $\cos ()$ represent a projection on the real basis axis, and \sin () represent a projection on the imaginary basis axis in a Cartesian plane (complex plan).
This paraphrase of a traditional (linear) real oscillator function does not help us much in our understanding of the circle oscillator since the rotation in a plane is an intrinsic $U(1)$ symmetry as its primary quality
If you want the real formulation you end up with the special orthogonal rotation group $\mathrm{SO}(2)$ of real 2×2 matrices (1.54), which indeed does not make things easier.
I prefer an image form of intuition (face) of the entity Ψ_{ω} as an internal oscillation that then is a member of the unitary rotation group $U(1) \sim\left(\phi \rightarrow e^{i \phi}\right) \sim\left\{\forall u_{\omega}=e^{i \omega t} \in \mathbb{C} \mid \omega \in \mathbb{R} \wedge \forall t \in \overrightarrow{\mathbb{R}}\right\}$.

7.5.3. The Internal Oscillation

In reality, it is an advantage to using the complex quantities formulation

$$
q_{\omega}=\tilde{q}_{\omega} u_{\omega}=q_{\omega}(t)=\tilde{q}_{\omega} e^{-i \omega t} \quad \text { and } \quad \dot{q}_{\omega}=-i \omega \cdot \tilde{q}_{\omega} u_{\omega}
$$

$p_{\omega}=z(\omega) \cdot q_{\omega}$
When the impedance ${ }^{40}$ is purely imaginary, as

$$
z(\omega)=-i \omega m_{a}
$$

it provides no resistance to oscillation, as (1.76) when $\tilde{q}_{\omega} \in \mathbb{R}$ is purely real
When ω is given constant the internal impedance $z(\omega)$ is considered constant $\frac{\partial z}{\partial t}=0$
However, the internal momentum p_{ω} of the rotation also changes as a function of the internal information development parameter

$$
\dot{p}_{\omega}=\frac{\partial}{\partial t} p_{\omega}(t)=\frac{\partial}{\partial t} m_{\omega} \dot{q}_{\omega}(t)=m_{\omega} \ddot{q}_{\omega}=-m_{\omega} \omega^{2} q_{\omega}
$$

Does the oscillator possess an internal inertia quantity m_{ω}, the quantity \dot{p}_{ω} will precisely the internal force to preserve the circular path $q_{\omega}=\tilde{q}_{\omega} u_{\omega}=\tilde{q}_{\omega} \cdot e^{-i \omega t}$ of the oscillator

[^0]For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

[^0]: Here we recall that Newton was operating with an external universal infinity moment (now time), and this has imprinted the classical mechanics since, up to Einstein, and even beyond for many applications.
 ${ }^{50}$ The impedance denotes an entanglement factor of the internal interdependency.
 C Jens Erfurt Andresen, M.Sc. NBI-UCPH, -43- Volume I, - Edition 2-2020-22, - Revision 6, December 2022

