

1.7. The Cyclic Rotation

1.7.1.1. A Entity in Physics and its Quantitative Functions

Changes are the reason that we can experience the world. What we experience are entities. An entity Ψ in physics shall be experienced with some given primary qualities that must be allocated quantities q_{i} that are measurable.
To make the quantities for changing, we must write the changing quantities as a function $q_{i}(t)$ of a parameter - the development parameter $t \in \overrightarrow{\mathbb{R}}$, which we will choose as a countable measure as described above. A change in the quantities $q_{i}(t)$ themself, we express in new derived functions $\dot{q}_{i}=q_{i}^{\prime}(t)$. The extra quantities \dot{q}_{i} associated with the entity Ψ will demand extra primary qualities in the category that characterises the entity Ψ. (See § 1.7.2. below)
For an entity Ψ in physics, we construct a function $L\left(q_{i}, \dot{q}_{i}\right)$ called the Lagrangian, or the Lagrange function of the corresponding quantities q_{i} and \dot{q}_{i} as arguments.
In section 1.7.5, we will demonstrate that higher order parameter derivatives have no explicit
impact or control on $L\left(q_{i}, \dot{q}_{i}\right)$.
We already here claim a new concept:
The Lagrange function $L(q, \dot{q})$ represents the portable energy for the entity

- For L positive; Ψ has a degree of freedom, and
- For L negative; Ψ is bonded to the surroundings ${ }^{32}$.

For the entity Ψ in physics we now have three sets of quantities:
$q_{i}(t), \dot{q}_{i}(t)$ and $L\left(q_{i}(t), \dot{q}_{i}(t), t\right)$.
From the way, they are defined, they are jointly associated with the parameter t. Since the parameter does not provide or add any external causal quality. We claim now that the parameter t is internal to the physical entity Ψ. Seen from the outside of the entity Ψ, we will process q and
\dot{q} as linear independent quantities. About this claim see section 2.1.1.
1.7.2. The Derivative Function

The change $f^{\prime}(x)$ of function $f(\mathrm{x})$ can be defined as the differential quotient
$f^{\prime}(x)=\lim _{\delta x \rightarrow 0} \frac{f(x+\delta x)-f(x)}{\delta x}$
This is often short written as
$\frac{d}{d x} f(x)=\frac{d f(x)}{d x}=f^{\prime}(x)$.
Here, we consider the symbol $\frac{d}{d x}$ as an operator, who acts on the following part. ${ }^{33}$
Rules for the differentiation of functions can be found in the literature. Just to be mentioned here:
$\frac{d}{d x} y^{a x}=a y^{x}$,
and the derivative of the exponential function is self-identical and follows this simple rule:

$$
\frac{d}{d x} \exp (x)=\exp (x) \Leftrightarrow \frac{d}{d x} e^{x}=e^{x}
$$

Which enables the power series (1.26) as the Taylor series for the exponential function.

32 The outstanding question here is: what are the surroundings? We need to consider that later
33 Used on a (), it $\frac{d}{d x}\left(_\right)$is applied on what is inside the brackets. Like the term $\frac{d(-)}{d x}$
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark

1.7.3. The Parameter Derived Quantity

For a quantity q as the function $q(t)$ of the parameter $t \in \overrightarrow{\mathbb{R}}$ we can write
the parameter-derived quantity as

$$
\dot{q}=\frac{d q}{d t}=\frac{d q(t)}{d t}=\frac{d}{d t} q(t)=q^{\prime}(t)
$$

and once again the parameter derived from this

$$
\ddot{q}=\frac{d^{2} q}{d^{2} t}=\frac{d^{2} q(t)}{d^{2} t}=\frac{d}{d t}\left(\frac{d}{d t} q(t)\right)=\frac{d}{d t} q^{\prime}(t)=q^{\prime \prime}(t)
$$

When we use the terms \dot{q} and \ddot{q} it is implicitly given, that it is the derivative concerning the information development parameter $t \in \overrightarrow{\mathbb{R}}$ for the quantity q. ${ }^{34}$
Specific expressed, the differentiated $\dot{q}=q^{\prime}(t)$ and the twice differentiated $\ddot{q}=q^{\prime \prime}(t)$
1.7.4. The Circular Rotation and the Unitary Group $U(1)$

The circular rotation has a primary quality given by the Euler circle $e^{i \phi} \in \mathbb{C}, \phi \in \mathbb{R}$.
The real quantity ϕ indicates the angle of rotation in the movement or just the difference in the rotation angle around the circle. The quantity ϕ is often called the chronometric phase angle. This primary quality is represented by the circle group, which is the multiplicative group of complex numbers with absolute value 1 , the complex number set

$$
\mathbb{T}=\{u \in \mathbb{C}| | u \mid=1\} .
$$

The circle group is synonymous with the unitary group $U(1)$ consisting of the exponential map $\mathbb{R} \rightarrow \mathbb{T}: \phi \rightarrow u \quad$ where $\quad u=e^{i \phi}=\cos \phi+i \sin \phi$
The following calculation rule applies to group elements in $\mathbb{T}: \quad e^{i \phi_{1}} e^{i \phi_{2}}=e^{i\left(\phi_{1}+\phi_{2}\right)}$ Setting the complex number $u=e^{-i \phi}$ and thus the complex conjugate $u^{*}=e^{i \phi}$, we get
$u^{2}=|u|^{2}=u^{*} u=e^{i \phi} e^{-i \phi}=e^{i(\phi-\phi)}=e^{0}=1 \quad \in \mathbb{T}$,
confirming that

$|u|=1$ for $\forall u \in \mathbb{T}$

We note that the group homomorphism exp: $\mathbb{R} \rightarrow \mathbb{T}$ linking the additive group \mathbb{R} to the multiplicative group \mathbb{T}.
Looking at the diverse groups with isomorphic properties we have $\mathbb{T} \sim U(1) \sim S O(2) \sim \mathbb{R} / \mathbb{Z}$
$S O(2)$ is the special orthogonal rotation group of real 2×2 matrices of the type
(1.54) $\quad\left[\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right], \quad$ with the determinant $\quad\left|\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right|=1$
\mathbb{R} / \mathbb{Z} represents the quotient group, is periodic identical, especially we see the formulation $\frac{\mathbb{R}}{2 \pi} / \mathbb{Z}$ has the same periodicity as the circle group and $U(1)$. (See Figure 1.1)

The difference between the circle group and $U(1)$ is that the elements of the former are defined in the set by $\{u \in \mathbb{C}||u|=1\}$, and the other the elements are 1×1 unitary matrices $[u]$, in the set $\left\{[u] \mid u \in \mathbb{C} \wedge u^{*} u=1\right\}$ corresponding to the complex numbers of the type $u=e^{i \phi} \in \mathbb{C}$, for $\phi \in \mathbb{R} . \quad-\quad$ The unitary group $U(1)$ apply $u \sim[u]_{1 \times 1}$. The map $\mathbb{R} \rightarrow \mathbb{T} \subset \mathbb{C}: \phi \rightarrow u(\phi)=e^{-i \phi} \quad$ is called for the exponential map of the real numbers to the unit circle in the complex plane.
This mapping is surjective but not injective. There is no causality in the real input $\phi \in \mathbb{R}$.

[^0]For quotation reference use: ISBN-13: 978-8797246931

[^0]: ${ }^{34}$ This implicit notation \dot{q} is a tradition dating from Newton, in contrast to the more detailed Leibniz notation $\frac{d q}{d t}=\frac{d q(t)}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta q}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{q(t+\Delta t)-q(t)}{\Delta t}$, while the notation $q^{\prime}=q_{t}^{\prime}=q^{\prime}(t)=\frac{d q(t)}{d t}$ is inherited from Lagrange.
 © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $-39-\quad$ Volume I, - Edition 2-2020-22, - Revision 6,

