
(1.15) $\quad t_{m}=m / f \approx t_{n}=n \in \overrightarrow{\mathbb{N}}$.

If you want a finer time measurement you must construct a faster cyclic clock with a higher frequency. ${ }^{23}$
We are now taking the cyclical circle clock \bigodot_{c}^{n}, with clock frequency $f_{c}=1$, and introduce a continuous real information development parameter $t \in \overrightarrow{\mathbb{R}}_{+}$synchronised by the map (1.12)

TIMING: $t \rightarrow t_{n}:=\left\lfloor f_{c} \cdot t\right\rfloor=\lfloor t\rfloor$,
which synchronises the development parameter $t \in \overrightarrow{\mathbb{R}}_{+}$with the timing $t_{n} \in \overrightarrow{\mathbb{N}}$, so that $\bigodot_{c}^{f_{c} \cdot t} \sim \bigodot_{c}^{n}$ is representing a continuous oscillating clock, in a circular motion with its own timing reference, as an autonomy clock, so that $f_{c}=1$ by definition.
Looking at the other circular motion $\odot^{f t} \sim \odot^{m}$, we can measure its oscillations ${ }^{24}$ with the development parameter $t \in \overrightarrow{\mathbb{R}}_{+}$from the timing clock $\odot_{c}^{t} \sim \bigodot_{c}^{n}$, where we prerequisite, that the relative proportion between $\odot^{f t} \sim \odot^{m}$ and $\odot_{c}^{t} \sim \bigodot_{c}^{n}$ is constant, as $f=m / n$ is constant, for a synchronous measure of the counts m and n.
From the clock \bigodot_{c}^{t} development parameter $t \in \overrightarrow{\mathbb{R}}_{+}$we can calculate the other $\bigodot^{f t}$ oscillation time $T=1 / f=t_{m} / m$ for its circular motion and its own timing map will be

TIMING: $t \rightarrow t_{m}=m \cdot T=m / f=\lfloor f \cdot t\rfloor \cdot T$,
with reference to the clock \bigodot_{c}^{t}
The number $m=\lfloor f \cdot t\rfloor$ counts laps in $\odot^{m} \sim \odot^{f t}$. Since we know that an angular turn in a circle is 2π, we introduce an autonomous and continuous number $\theta=2 \pi \cdot f \cdot t$ called for the phase angle of the circular oscillation. This phase angle $\theta \in \mathbb{R}$ then expressed an autonomous information development parameter for a circle of oscillation $\bigodot^{\theta / 2 \pi}$

TIMING: $\quad \theta \rightarrow\lfloor\theta / 2 \pi\rfloor, \quad$ the autonomous phase angle timing is modulo 2π.
The phase angle concept is widely used in quantum mechanics, optics, and electronics which we describe later below.
In (1.17) the frequency f and oscillation time T are measured relative to the clock \odot_{c}^{n} just as the development parameter $t \in \overrightarrow{\mathbb{R}}_{+}$. It is common to use the same development parameter $t \in \overrightarrow{\mathbb{R}}_{+}$ for all cyclic conditions for any entity in local physics, with a constant relative relation to the clock \bigodot_{c}^{t}.
Mathematically all these numbers are now accounted for as real quantities: $\theta, t, f, \mathrm{~T} \in \mathbb{R}$, although when measured, they can only provide by relatively counting the whole integer number, i.e., in rational number relationships

Object examples of cyclic rotating watches

- 1 oscillation in a Cs 133 atom clock
- 1 second with caesium clock
- 1 minute 60 seconds
- 1 hour by 3600 seconds
- 1 day with 86,400 seconds
- 1 year of $31,556,926$ seconds

$$
\begin{aligned}
& \bigodot_{C s}^{1} \\
& \bigodot_{s}^{1} \sim \bigodot_{C s}^{9192631770} \\
& \bigodot_{m}^{1} \sim \bigodot_{s}^{60} \\
& \bigodot_{h}^{1} \sim \bigodot_{s}^{3600} \\
& \bigodot_{d}^{1} \sim \bigodot_{s}^{86400} \\
& \bigodot_{y}^{1} \sim \bigodot_{s}^{31556926}
\end{aligned}
$$

The cyclic time can be represented by a circle of rotation.
The most elegant way in mathematics of representing a circle of rotation is Euler's circle formula, using complex numbers.
${ }^{23}$ A graduated scale for a hand pointer on a dial is a spatial measure of angle or distance, that does not indicate a true time measure ${ }^{24} \mathrm{As}$ an association with the traditional continuous complex number clock oscillator, we can write $\bigodot^{f t} \equiv e^{-i 2 \pi f t} \equiv e^{-i \omega t}$, see below. © Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad-32-\quad$ Research on the a priori of Physics - \quad December 2022

For quotation reference use: ISBN-13: 978-8797246931

1.4.1.2. The Circle Plan ${ }^{25}$

The circle is a figure in the plane of Euclidean geometry. The Euclidean plane may traditionally be represented by \mathbb{R}^{2}, so that a point is represented by $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ from origo $(0,0)$.
The same point can be represented in the complex plane concept by $z \in \mathbb{C}$ from origo $0 \in \mathbb{C}$.
We connect the two representations $\mathbb{C} \sim \mathbb{R}^{2}$ of the Euclidean plane, as $z \sim\left(x_{1}, x_{2}\right)$ by the definition $z=x_{1}+i x_{2}=\operatorname{Re} z+i \operatorname{Im} z$, thus $\left(x_{1}, x_{2}\right)=(\operatorname{Re} z, \operatorname{Im} z) \in \mathbb{R}^{2}$
From these, the circle is defined by Euler's circle formula from the polar real representation
$(r, \theta) \in \mathbb{R}^{2} \rightarrow z=r \cos \theta+i r \sin \theta \in \mathbb{C}, \quad$ with $\quad\left(x_{1}, x_{2}\right)=(r \cos \theta, r \sin \theta) \in \mathbb{R}^{2}$ Which makes a complex number:

1.5. The Complex Numbers

The imaginary unit i of the complex numbers is defined as the number that multiplied by itself gives -1

The complex numbers $z=x+i y \in \mathbb{C}$ are composed of one real part $\operatorname{Re}(z)=x$ and one imaginary part $\operatorname{Im}(z)=y$

$$
z=\operatorname{Re}(z)+i \operatorname{Im}(z)=x+i y \leftrightarrow(x, y)
$$

in which $\quad x, y \in \mathbb{R}$, and $z \in \mathbb{C} \Rightarrow(x, y) \in \mathbb{R}^{2} \leftrightarrow \mathbb{C}$,
z is represented by a point (x, y) in the plane. ${ }^{26} \quad$ A 'vector' ${ }^{27}$ can point out the point

$$
\vec{r}=\binom{x}{y}=(x, y)^{T}, \quad \text { from an origo }(0,0)
$$

(1.23) $\quad r^{2}=x^{2}+y^{2}=x^{2}-(i y)^{2}=(x+i y)(x-i y)=z \cdot z^{*} \in \mathbb{R}$, where $\quad z^{*}=x-i y$
z^{*} is called for the complex conjugated to z.
The complex numbers have the magnitude $\quad|z|=|\vec{r}|=\sqrt{x^{2}+y^{2}} \in \mathbb{R}$
In addition, we often use an absolute square on a complex number

$$
|z|^{2}=z \cdot z^{*} \quad \text { compared to the traditional form }|z|^{2}=|\vec{r}|^{2}=x^{2}+y^{2}
$$

Here we notice the particularly significant difference in the notation used here

$$
|i|^{2}=i \cdot i^{*}=1, \quad \text { while } \quad i^{2}=(i)^{2}=i \cdot i=-1
$$

1.5.2. The Complex Exponential Function

To prepare the mathematical significance of the circle rotation we will use the complex exponential, which by definition is given by the power series:

$$
e^{z}:=1+\frac{z}{1!}+\frac{(z)^{2}}{2!}+\frac{(z)^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{(z)^{n}}{n!}
$$

${ }^{25}$ Much more about the circular rotation in the geometric plane concept later in chapter II. 5 below for the Geometric Algebr

 The complex plane is represented by the Cartesian coordinate system with basis vectors $\hat{x} \perp \hat{y}$ and coordinate axes which are mutually perpendicular $\mathrm{x}_{\text {axis }} \perp y_{\text {axis }}$ to make a point (x, y) of the plane. The imaginary unit i represent together with the real unit 1 the two perpendicular unit-basis-vectors. $\hat{i}=\hat{y} \perp \hat{1}=\hat{x}$. More below \S 4.1.3 and (5.142),A point (x, y) in the abstract complex plane $z \in \mathbb{C}$ shall not be interpreted as existing in the natural physical 3D space.
A traditional radius vector \vec{r} can 'lift' an origo point $(0,0)$ to an arbitrary point in the plane (x, y). Or said in another way designate the point in the plane from origo.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH,
For quotation reference use: ISBN-13: 978-879724693

