Geometric Critique

of Pure

Mathematical Reasoning

Edition

N

 \bigcirc

020-

 $\frac{122}{2}$

December 2022

len

 \mathbf{v}

Andres

en

Researc

D

on

the

ρ

priori

of

Physics

- I. The Time in the Natural Space - 1. The Idea of Time - 1.4. The Cyclic Time -

$t_m = m/f \approx t_n = n \in \vec{\mathbb{N}}.$ (1.15)

If you want a finer time measurement you must construct a faster cyclic clock with a higher frequency.²³

We are now taking the cyclical circle clock \bigcirc_{c}^{n} , with clock frequency $f_{c}=1$, and introduce a continuous real information development parameter $t \in \mathbb{R}_+$ synchronised by the map (1.12) TIMING: $t \to t_n \coloneqq |f_c \cdot t| = |t|$,

which synchronises the development parameter $t \in \mathbb{R}_+$ with the timing $t_n \in \mathbb{N}$, so that $\bigcirc_c^{f_c \cdot t} \sim \bigcirc_c^n$ is representing a continuous oscillating clock, in a circular motion with its own timing reference, as an autonomy clock, so that $f_c = 1$ by definition.

Looking at the other circular motion $\bigcirc^{ft} \sim \bigcirc^m$, we can measure its oscillations²⁴ with the development parameter $t \in \mathbb{R}_+$ from the timing clock $\bigcirc_c^t \sim \bigcirc_c^n$, where we prerequisite, that the relative proportion between $\bigcirc^{ft} \sim \bigcirc^m$ and $\bigcirc^t_c \sim \bigcirc^n_c$ is constant, as f = m/n is constant, for a synchronous measure of the counts *m* and *n*.

From the clock \bigcirc_c^t development parameter $t \in \mathbb{R}_+$ we can calculate the other \bigcirc_c^{ft} oscillation time $T = 1/f = t_m/m$ for its circular motion and its own timing map will be

with reference to the clock \bigcirc_c^t . TIMING: $t \rightarrow t_m = m \cdot T = m/f = |f \cdot t| \cdot T$, The number $m = |f \cdot t|$ counts laps in $\bigcirc^m \sim \bigcirc^{ft}$. Since we know that an angular turn in a circle is 2π , we introduce an autonomous and continuous number $\theta = 2\pi f \cdot t$ called for the phase angle of the circular oscillation. This phase angle $\theta \in \mathbb{R}$ then expressed an autonomous information development parameter for a circle of oscillation $\bigcirc^{\theta/2\pi}$.

TIMING: $\theta \rightarrow |\theta/2\pi|$, the autonomous phase angle timing is modulo 2π . (1.18)

The phase angle concept is widely used in quantum mechanics, optics, and electronics which we describe later below.

In (1.17) the frequency f and oscillation time T are measured relative to the clock \bigcirc_{c}^{n} just as the development parameter $t \in \mathbb{R}_+$. It is common to use the same development parameter $t \in \mathbb{R}_+$ for all cyclic conditions for any *entity* in local physics, with a constant relative relation to the clock \bigcirc_{c}^{t} .

Mathematically all these numbers are now accounted for as real *quantities*: θ , t, f, T $\in \mathbb{R}$, although when measured, they can only provide by relatively counting the whole integer number, i.e., in rational number relationships.

Object examples of cyclic rotating watches:

- 1 oscillation in a Cs₁₃₃ atom clock
- 1 second with caesium clock
- 1 minute 60 seconds
- 1 hour by 3600 seconds
- 1 day with 86,400 seconds
- 1 year of 31,556,926 seconds

The cyclic time can be represented by a circle of rotation.

The most elegant way in mathematics of representing a circle of rotation is Euler's circle formula, using complex numbers.

A graduated scale for a hand pointer on a dial is a spatial measure of angle or distance, that does not indicate a true time measure.
As an association with the traditional continuous complex number clock oscillator, we can write $\bigcirc^{ft} \equiv e^{-i2\pi ft} \equiv e^{-i\omega t}$, see below.

C Jens Erfurt Andresen, M.Sc. Physics, Denmark - 32 -Research on the a priori of Physics

 \bigcirc^1_{Cs}

~

~

~

 \sim

 \bigcirc^1_s

 \bigcirc_m^1

 \bigcirc^1_d

 $\bigcirc_{CS}^{9192631770}$

 \bigcirc_{s}^{60}

 \odot^{3600}_{s}

 \bigcirc_{s}^{86400}

 $\odot^{31556926}_{2}$

For quotation reference use: ISBN-13: 978-8797246931

- 1.5.2. The Complex Exponential Function - 1.4.1.2 The Circle Plan -

1.4.1.2. The Circle Plan²⁵

The circle is a figure in the plane of Euclidean geometry. The Euclidean plane may traditionally be represented by \mathbb{R}^2 , so that a point is represented by $(x_1, x_2) \in \mathbb{R}^2$ from origo (0,0). The same point can be represented in the complex plane concept by $z \in \mathbb{C}$ from origo $0 \in \mathbb{C}$. We connect the two representations $\mathbb{C} \sim \mathbb{R}^2$ of the Euclidean plane, as $z \sim (x_1, x_2)$ by the definition $z = x_1 + i x_2 = \operatorname{Re} z + i \operatorname{Im} z$, thus $(x_1, x_2) = (\operatorname{Re} z, \operatorname{Im} z) \in \mathbb{R}^2$ From these, the circle is defined by Euler's circle formula from the polar real representation

 $(r,\theta) \in \mathbb{R}^2 \longrightarrow z = r\cos\theta + ir\sin\theta \in \mathbb{C}$, with $(x_1, x_2) = (r\cos\theta, r\sin\theta) \in \mathbb{R}^2$ (1.19)Which makes a complex number:

1.5. The Complex Numbers

The imaginary unit i of the complex numbers is defined as the number that multiplied by itself gives -1

(1.20)
$$i \cdot i = i^2 - 1 \Rightarrow i = \sqrt{-1}.$$

The complex numbers $z = x + iy \in \mathbb{C}$ are composed of one real part $\operatorname{Re}(z) = x$ and one imaginary part $\operatorname{Im}(z) = y$

(1.21)
$$z = \operatorname{Re}(z) + i \operatorname{Im}(z) = x + iy \leftrightarrow (x, y),$$

in which $x, y \in \mathbb{R}$, and $z \in \mathbb{C} \implies (x, y) \in \mathbb{R}^2 \iff \mathbb{C}$, z is represented by a point (x, y) in the plane.²⁶ A 'vector'²⁷ can point out the point

(1.22)
$$\vec{r} = \begin{pmatrix} x \\ y \end{pmatrix} = (x, y)^T$$
, from an origo (0,0).

(1.23)
$$r^2 = x^2 + y^2 = x^2 - (iy)^2 = (x + iy)(x - iy)^2$$

z* is called for the complex conjugated to z.

The complex numbers have the magnitude

In addition, we often use an absolute square on a complex number

 $|z|^2 = z \cdot z^*$ (1.24)Here we notice the particularly significant difference in the notation used here

 $i^2 = (i)^2 = i \cdot i = -1$ $|i|^2 = i \cdot i^* = 1$, while (1.25)

1.5.2. The Complex Exponential Function

To prepare the mathematical significance of the circle rotation we will use the complex exponential, which by definition is given by the power series:

(1.26)
$$e^{z} \coloneqq 1 + \frac{z}{1!} + \frac{(z)^{2}}{2!} + \frac{(z)^{3}}{3!} + \dots = \sum_{n=0}^{\infty} \frac{(z)^{n}}{n!}$$

 ²⁵ Much more about the circular rotation in the geometric plane concept later ²⁶ The complex plane is represented by the Cartesian coordinate system with 1 mutually perpendicular x_{axis}⊥y_{axis} to make a point (x, y) of the plane. The unit 1 the two perpendicular unit-basis-vectors. î = ŷ ⊥ î= x̂. More below A point (x, y) in the abstract complex plane z ∈ C shall not be interpreted a complex plane <i>i</i> an origo point (0,0) to an arbitrary providesignate the point in the plane from origo.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH, -33 -

For quotation reference use: ISBN-13: 978-8797246931

(1.16)

(1.17)

in chapter II. 5 below for the Geometric Algebra. basis vectors $\hat{x} \perp \hat{y}$ and coordinate axes which are he imaginary unit *i* represent together with the real ow § 4.1.3 and (5.142). as existing in the natural physical 3D space.

point in the plane (x, y). Or said in another way